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ABSTRACT 

Advances in computing technology, over the past decades, allowed the development of a number of 

different history matching techniques. Nevertheless, the simultaneous integration of production data 

under geological consistency, as part of the reservoir modeling workflow, still remains a challenge. A 

geologically consistent approach aims to avoid solutions that are unrealistic under the reservoir’s general 

geological characteristics. Unrealistic history matching solutions would result in poor reservoir response 

forecasting. It is also essential to include only geologically realistic models for uncertainty assessment 

based on multiple models that are consistent with the geological data and also in order to match observed 

production history. Geostatistical history matching can iteratively update static reservoir model 

properties through conditional assimilation constrained to the production data, using geologically 

consistent perturbation. Multiple stochastic realizations are assimilated following a zonation approach 

to account for the local match quality, thus providing a way to integrate regionalized discretization of 

parameters with production data and engineering knowledge. The present project proposes a new history 

matching technique applied in uncertain reservoir conditions represented by geologically consistent 

reservoir zonation, based on fault presence and fluid production streamlines. The work explores the value 

of using a geologically consistent zonation associated with production wells in geostatistical history 

matching regions, coupled with adaptive stochastic sampling and Bayesian inference for uncertainty 

quantification and optimization of geological and engineering properties. This novel approach makes use 

of the Direct Sequential Simulation algorithm for generation of stochastic realizations and Particle 

Swarm Optimization for parameter optimization. The approach is tested in a semi–synthetic case study 

based on a braided–river depositional environment. 
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RESUMO 

Com os avanços na tecnologia de computação, alcançados nas últimas décadas, um número considerável 

de diferentes técnicas de ajuste de histórico, têm vindo a ser desenvolvidos. Apesar de tudo, a integração 

simultânea de dados de produção sob uma premissa de consistência geológica, como parte do fluxo de 

trabalho da modelação de reservatórios, continua a ser um desafio. Uma abordagem geologicamente 

consistente visa evitar soluções que não são realistas sob as características geológicas gerais do 

reservatório. Soluções de ajuste de histórico irrealistas resultam numa má previsão da resposta do 

reservatório. A inclusão de modelos geologicamente realistas na avaliação da incerteza, tendo como base 

vários modelos que são consistentes com os dados geológicos, é um aspeto essencial. O mesmo sucedendo 

no respeitante ao ajuste de histórico de produção observada. O ajuste de histórico geoestatístico permite 

atualizar iterativamente as propriedades estáticas do modelo de um reservatório, através de assimilação 

condicional restringida aos dados de produção, usando para isso, uma perturbação geologicamente 

consistente. Realizações estocásticas múltiplas são assimiladas seguindo uma abordagem de 

regionalização para garantir a qualidade da correspondência local da produção, permitindo a sua 

integração com conhecimentos de engenharia e geologia. O presente projeto propõe uma nova técnica de 

ajuste de histórico, aplicada em condições de incerteza nos parâmetros do reservatório, que é discretizado 

por uma metodologia de regionalização geologicamente consistente, com base na presença de falhas e 

linhas de fluxo da produção de fluidos. O trabalho explora o valor do uso de uma metodologia de 

regionalização geologicamente consistente, associada à produção de poços em regiões que serão ajustadas 

através de um algoritmo de ajuste de histórico geoestatístico. Este método será utilizado conjuntamente 

com um algoritmo de amostragem estocástica adaptativa e inferência Bayesiana, por forma a quantificar 

a incerteza e otimizar as propriedades geológicas e de engenharia do reservatório. Esta nova abordagem 

faz uso do algoritmo de Simulação Sequencial Direta para a geração de realizações estocásticas e do 

algoritmo de Otimização por Enxame de Partículas, para a otimização de parâmetros. A abordagem é 

testada num caso de estudo semissintético baseado num ambiente de deposição fluvial–entrelaçado.  
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1 INTRODUCTION 

Reservoir modelling is a crucial step in the development and management of hydrocarbon reservoirs. 

Field development decisions such as location and number of production wells, production strategy and 

reservoir pressure maintenance depend on an accurate representation of the subsurface. An accurate 

reservoir model is one that honours all available data at the scale and precision at which they are 

available. Given the sparsity of information related with the subsurface reservoir properties and the 

economic gains for that information, the reservoir modeller should extract the maximum possible 

reservoir specific information from all available data while including the uncertainty associated with 

measurement errors and the lack of knowledge about the system he is trying to model. 

The information available to model a given hydrocarbon reservoir is continually upgraded over the 

course of field development. Rock core measurements, well log data, among others, allow the estimation 

of the petrophysical properties in the near well-bore region as well as an indication of reservoir 

productivity. On the other hand, reservoir production data can be used to cross-check the quality of the 

models that honour the existing available data. 

However, the relationship between hard data and production data in highly non-linear. Integration of 

both types of data into reservoir modelling is a challenging task. The process of history matching tries 

to address this problem by applying changes to the reservoir model parameters in order to minimize a 

given cost function, responsible for the quantification of the mismatch between observed production data 

(historical data) and the dynamic model response (simulated production data). This, however is not a 

single solution problem. In fact, multiple reservoir models (static or dynamic) can produce equally 

matched responses. 

Over recent years, several approaches have been developed to address history matching of hydrocarbon 

reservoirs. Methods depending on data assimilation, like the Ensemble Kalman Filter (Evensen, et al. 

2007), gradual deformation (Hu, et al. 2001) and probability perturbation (Caers & Hoffman, 2006) or 

stochastic sequential simulation and co-simulation (Mata-Lima, 2008), (Le Ravalec-Dupin & Da Veiga, 

2011) have been proposed. 

Other methods like Stochastic Optimisation algorithms, allow reducing computational times by sampling 

from the ensemble of best matched models, in order to improve matches. Algorithms such as the 

Neighbourhood Algorithm (Sambridge, 1999), Genetic Algorithm (Erbas & Christie, 2007), Particle 

Swarm Optimisation (Mohamed, 2011) and Differential Evolution (Hajidazeh, et al. 2009) have been 

successfully applied to the history matching problematic, on recent years.  

The present project proposes a new history matching technique, coupling conventional Geostatistical 

History Matching (GHM) methodologies with the integration of Adaptive Stochastic Sampling. The 

proposed methodology applies a GHM technique under uncertain reservoir conditions, represented by 

geologically consistent reservoir zonation, based on fault presence and fluid production streamlines. The 

proposed methodology explores the value of using a geologically consistent zonation methodology, 
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associated with production wells in GHM regions, coupled with Adaptive Stochastic Sampling and 

Bayesian inference for uncertainty quantification and optimization of geological and engineering 

properties. 

This novel approach makes use of the Direct Sequential Simulation (DSS) algorithm for generation of 

stochastic realizations and Particle Swarm Optimization (PSO) for parameter optimization. The 

proposed history matching approach is tested in a semi–synthetic case study based on a braided–river 

depositional environment. 

This thesis was developed as part of the Master of Science Degree in Petroleum Engineering, promoted 

by the Instituto Superior Técnico, Lisbon, in a partnership between CERENA (Centro de Recursos 

Naturais e Ambiente), from Instituto Superior Técnico and the Uncertainty Quantification Group from 

the Institute of Petroleum Engineering of Heriot-Watt University, Edinburgh. 

1.1 Thesis outline 

The structure of this manuscript is composed by six chapters. A brief description of each chapter is 

presented as next: 

• Chapter 1 – The first chapter introduces the topic for the work, stating its challenges and a 

brief description of the methodology adopted, as well as the importance of the study; 

• Chapter 2 – The second chapter introduces the theoretical concepts related with the 

development of this work. Details about the concepts and algorithms being used for the 

development of this work are explained; 

• Chapter 3 –In the third Chapter, the methodology used for the development of this work is 

explained, including the explanation of the GHM and coupling with Adaptive Stochastic 

Sampling algorithms being developed; 

• Chapter 4 –The fourth Chapter presents the selection of the case study that was used for 

implementation of the algorithm, and the criteria of importance to this work that based its 

selection; 

• Chapter 5 – The fifth Chapter is the presentation of the results obtained from the application 

of the developed methodology. Results for traditional GHM and GHM coupled with Adaptive 

Stochastic Sampling are displayed and discussed; 

• Chapter 6– The sixth chapter states the conclusions to the application of the proposed 

methodology. 
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2 THEORETICAL BACKGROUND 

2.1 Geostatistical model 

Geostatistics deals with modeling the spatial/temporal distribution of a given property of interest and 

has found a wide range of applications, from mining and oil exploration to agricultural purposes as well 

as image analysis. The concepts in geostatistics can be applied to a variety of problems that exhibit 

spatial dependence.  

Geostatistics was primarily developed for application in the mining industry, during the 50s, when the 

mining engineer D.G. Krige (1951) and statistical H.S. Sichel (1952) developed new estimation methods 

for direct application to mineral reserves. Between 1957 and 1963, the French engineer G. Matheron, 

based on the observations of D.G. Krige, developed the theory of regionalized variables (Matheron, 

Principles of geostatistics, 1963). Since 1968, geostatistics has been used for hydrocarbon reserve 

estimation. Between 1968 and 1970, the theory of Universal Kriging (name introduced by Matheron in 

honor of Krige) was developed for application to underwater mapping. In 1973, Matheron created the 

intrinsic theory of Order K, for application to meteorology problems (Matheron, 1973). Between 1972 

and 1973, the principle of Convex Analysis emerged, aimed at maximizing the recoverable reserves of 

underground reservoirs. In 1974 the theory of recovery functions and, based on it, the concepts of applied 

nonlinear geostatistics (Agterberg, 1974), were developed for application on the selection of recoverable 

reserves. 

The purpose of geostatistics, applied to the oil industry, is to improve prediction of the spatial 

distribution of the petrophysical properties of interest, by building more realistic and heterogeneous 

models of a given reservoir.  

Geostatistical stochastic simulation procedures are often aimed at the generation of multiple plausible 

results. Contrary to a deterministic approach, where you have a unique model of the reality, multiple 

and equiprobable stochastic or geostatistical realizations, allow a quantification of the spatial uncertainty 

associated to the models. The advantage of using many equiprobable geostatistical realizations for 

modeling a hydrocarbon reservoir, requires multiple reservoir flow simulations and consequent time and 

computational costs, but the advantages of having such a tool outweigh its inherent disadvantages. 

2.1.1 Random variables 

In classical statistics, a random variable is considered to be a variable that can be sampled repeatedly 

(at least, in a theoretical point of view) and that each sample is independent from the previous (Soares, 

2006). 
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By taking into account the example of a core extracted from a rock, a core sampled at location x is not 

random. It is in fact unique and physically determined, although with a measurement error associated. 

This way, there is no possibility of getting a repeated core sample from exactly the same location, which 

is something that violates the repeatability condition previously assumed. Nevertheless, a new sample 

can be taken within a proximity of location x, which in other words means that the condition of 

repeatability can be approximately met. However, the sample independence condition is violated, as the 

two cores will not be independent from each other, since the second core sample is likely to be similar 

to the first sample. This is what is behind the concept of spatial continuity, meaning that independence 

between samples cannot be assumed and that in fact, samples are spatially correlated among each other 

and that this correlation depends directly on the distance separating the samples. 

Figure 1 depicts the end result of the collection of data of a given property (i.e. porosity or permeability), 

where the concept of repeatability and non–dependency of the samples is demonstrated. Spatial 

continuity between the different regions of the plane is shown by the similitude between the distributions 

of neighboring cells, as opposed to the dissimilitude of the distributions between far away cells. 

 

Figure 1 – Distributions of a collection of field data (Arnold & Demyanov, 2015). 

2.1.2 Stationarity 

As previously seen, sampling data is considered as been originated by a random process (hence the name 

random variable), this however, does not equal to say that the phenomena that generated the sample 

data, also originates from a random process. In fact, random variables are what compose the random 

function and from this random function, only the sample data is known.  

Geostatistics assumes several degrees of stationarity of the random function. According to the 

assumption that the correlation between any two random variables is dependent on their distance (h), 
when applied to the covariance of a random function, stationarity is stipulated to be independent from: 
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• Distribution of the variables (meaning strict stationary); 

• Mean m(x), which is assumed to be constant; 

• Variance σ2(x), also assumed to be constant; 

• Covariance, C(x, h). 
As such, by considering a property z which is assumed to be a spatially distributed variable (for instance 

porosity or permeability), z(x) can then be treated as a realization of the stochastic variable Z(x), with 

x indicating that z is a regionalized variable. This way, the expected value of Z(x) is given as 

 �{�(�)}  =  "(�) (1)

and the covariance is given by 

 	(�, ℎ)  =  �{[�(�) − "(�)][�(� + ") − "]} (2)

If the mean of the property in question is independent of position, that is m(x)  =  m, Z is denoted as 

first order stationary. If also the covariance is independent of the position, then Z is denoted as second 

order stationary. Within these assumptions, the variogram can be defined as: 

 2�(ℎ)  =  �{[�(�) − �(� + ℎ)]2} (3)

The intrinsic hypothesis of geostatistics states the independency of the variogram in terms of the 

position, only depending on the lag, i.e. the distance h, between the two points (Goovaerts, 1997). 

Mathematically stated the intrinsic hypothesis says: 

 �(�, ℎ)  =  �(ℎ) (4)

If the stochastic variable Z is second order stationary, then the intrinsic hypothesis is valid. Under 2nd 

order stationarity the semivariogram is given as: 

 �(ℎ)  =  	(0) − 	(ℎ) (5)

The validity of the previous equation can be shown by the following proof: 

The variance is defined as 

 �2  =  �{[�(ℎ) − "]2}  =  �{�2(ℎ)} − "2 (6)

and the covariance is defined as 

 	(ℎ) = �{[�(�) − "][�(� + ℎ) − "]}= �{�(�) ·  �(� + ℎ)} − "�{�(�)} − "�{�(� + ℎ)} + "2
= �{�(�) ·  �(� + ℎ)} − "2

 (7)

The variogram is defined as 
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 2�(ℎ) = �{[�(�) − �(� + ℎ)]2}= �{�2(�)} + �{�2(� + ℎ)} − 2�{�(�) ·  �(� + ℎ)} (8)

By combining the previous equations, the expression becomes 

 2�(ℎ) = 2(�2  + "2) − 2(	(ℎ) + "2)�(ℎ) = �2  − 	(ℎ) = 	(0) − 	(ℎ)  (9)

From a number of observations the experimental semivariogram is easily calculated by  

 �̂(ℎ) = 12+(ℎ) ∑(�(�.) − �(�.  + ℎ))20(ℎ)
2=1

 (10)

where N(h) is the number of pairs of observations with a lag distance of h. 

2.1.3 Semivariogram modeling 

A number of empirical semivariogram models can be used to describe the spatial continuity pattern of 

z within a given area, e.g. the area comprising an oil reservoir. The following equations show the most 

common variogram models used for semivariogram modeling. Note that the variogram model selected 

to model the experimental variogram should be positive.  

Spherical 

model 
 

�∗(ℎ) =
⎩{{
⎨{
{⎧ 0 ℎ =  0

	0  + 	1  (23 ℎ= − 12 ℎ3
=3) 0 <  ℎ <  =

	0  + 	1 ℎ ≥  =
 (11)

    

Exponential 

model 

 �∗(ℎ) = { 0 ℎ = 0
	0  + 	1 (1 − D(−3ℎF )) ℎ > 0 (12)

    

Gaussian 

model 

 �∗(ℎ) = ⎩{⎨
{⎧ 0 ℎ = 0

	0  + 	1 (1 − D(−3ℎ2F2 )) ℎ > 0 (13)

The parameter C0 is denoted as the nugget effect and acts as a measure of measurement error and 

discontinuity in the vicinity of h =  0. The quantity C0  + C1 is designated by sill which is the value of 

the semivariogram as the lag tends to infinity, i.e. the total variance of the existing experimental samples. 

R is the range of influence and measures the extent to which a measurement has an impact on a new 

estimation, i.e. the spatial correlation of a given sample in space. 
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2.1.4 Modeling spatial anisotropy 

The previous sections introduced the concepts related with a statistically homogeneous two–dimensional 

field. Such a field is called isotropic, indicating that the variability of the property in question (e.g. 

permeability) does not depend on the direction of the separation vector h – only the distance (or length 

of the vector) is responsible for any variability. In many applications such an assumption is invalid. In 

reservoir modeling and characterization a model may be systematically build up by areas with unique 

properties according to some underlying geologic process. 

Hohn (1999) defines geometric anisotropy as the situation where the sill is independent of the direction 

of h and only the range of influence depends on the direction. 

Consider the two spherical semivariograms which account for horizontal variability and vertical 

variability, respectively: 

 �1(ℎ) = 3ℎ2=1 − ℎ3
2=13 (14)

 �2(ℎ) = 3ℎ2=2 − ℎ3
2=23 (15)

The anisotropy ratio (�) is defined as  

 � = =1=2 (16)

Inserting νh in the first semivariogram gives 

 �1(�ℎ) = 3=1ℎ2=2=1 − =13ℎ3
2=23=13 = 3ℎ2=2 − ℎ3

2=23 = �2(ℎ) (17)

Thus, the semivariogram in the vertical direction can be calculated by the semivariogram for the 

horizontal direction if the separation distance is multiplied with the anisotropy ratio. Such an approach, 

however, only enables the user to determine the semivariogram in two directions – the horizontal and 

the vertical directions. If the direction lies between these, a change of coordinate system must be applied. 

Let a linear coordinate transformation be given as 

 ℎℎ′ = N11ℎℎ + N12ℎO (18)

 ℎO′ = N21ℎℎ + N22ℎO (19)

where h = [hh hv]T and h′ = [hh′  hv′ ]T. 

Figure 2 shows an ellipsoid with axes corresponding to the directions of influences associated with the 

ranges of influence R1 and R2.  
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Figure 2 –Coordinate transformation, adapted from Yaseen et al. (2013). 

In the following discussion � will denote the angle between the principal axis of the ellipsoid and the 

horizontal axis as depicted in Figure 2. 

Hohn (1999) gives the transformation 

 ℎ′ = [1 00 �] [ UVW � WXY �− WXY � UVW �] ℎ = Z=ℎ (20)

This transformation aligns the kriging coordinate system with the axes of influence. 

The semivariogram value can now be determined by the use of the transformed coordinates: 

 �(ℎ) = 3‖ℎ′‖2=1 − ‖ℎ′‖3
2=13  (21)

where 

 ‖ℎ′‖ = √ℎℎ′2 + ℎO′2 (22)

2.1.5 Stochastic sequential simulation 

In Geostatistics, kriging methods can be generalized to be part of the so–called estimation methods. 

These methods are characteristic in the sense that the estimated field is unique, and deterministic 

because the estimation variance is minimized. This means that whenever a number of sample values are 

present and the variability (the semi–variogram) is determined, only one model will fulfill the 
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requirement of minimum estimation variance. The so–called stochastic sequential simulation techniques 

are different with respect to this property.  

Such simulation techniques require a two stage process. First, there is a need to estimate the expected 

value at a given location by kriging along with the corresponding kriging variance. These estimates are 

carried out on the available sample data along with any other previously simulated values. From these 

estimates a local distribution function is created and a value is simulated by using Monte Carlo 

simulation. The simulation techniques visit each unknown point sequentially following a random path 

that visits all the grid cells. The way the local probability function is modelled varies from method to 

method. Figure 3 illustrates the workflow in sequential simulation. 

 

Figure 3 – Illustration of the workflow in sequential simulation, adapted from Correia (2013). 

Stochastic simulation models are intended to reproduce equiprobable images of the reality, considering 

what is known of the reality, meaning, the variability of the available samples, including the variable 

probability distribution and its spatial continuity, revealed by the variogram or covariance study of the 

sample (Caragea & Smith, 2006). 

Making a large number of simulations of a given reality, makes it possible to characterize the uncertainty 

of a given phenomenon. Most recent simulation methods are based on a sequential simulation approach, 

where an extension of the methods of stochastic simulation based on Bayes rule on the conditional 

probability kriging. 

 ](^|`)  = ](^, `)](`)  (23)
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2.1.5.1 Direct sequential simulation 

DSS performs simulation without transformation of the original variables, thus not requiring any prior 

indicator coding or multi–Gaussian assumptions. The covariance model is reproduced as long as the 

conditional distributions identify the local kriging means and variances. Any distribution type (Gaussian, 

log–normal, uniform) can be used to build the local conditional distribution (Journel, 1994). 

However, histogram reproduction becomes an issue when using the DSS algorithm, because DSS does 

not have the equivalent of the normal score back transform of the often used Sequential Gaussian 

Simulation (SGS) algorithm. A solution proposed by Soares (2001) consists at sampling the global target 

histogram at each simulation node, by means of simple kriging, in such a way as to identify the local 

kriging mean and variance. This method provides an approximation of the target histogram, while 

honoring the covariance model, resulting in a re–sampling of the global cdf FZ(Z) in order to obtain a 

new distribution FZ′ (Z) with its intervals centered on the local mean and with a spread proportional to 

the conditional local variance (Soares, 2001). This process will determine the shape of the local cdf, at 

all locations along the path, such that the marginal distribution is approximated at the end of each 

realization. 

DSS can be summarized by the following algorithm (Soares 2001): 

• Definition of a random path that encompasses all nodes to simulate xu where , u = 1,… , N and 

N equals to the number of nodes to simulate; 

• Estimation of the assumed local mean and variance of z(xu), respectively, the simple kriging 

estimate z(xu)∗ and estimation variance σSK2 (xu) conditioned to the experimental data z(xi) and 
previous simulated values zS(xi); 

• Definition of the interval of the global cdf Fz (z) to be sampled, by using the algorithm described 

in Soares (2001); 

• Draw a simulated value zS(xu) from the selected interval of the global cdf Fz(z); 
• Loop until all N nodes have been visited and simulated. 

2.1.5.2 Direct Sequential co–Simulation 

Direct sequential co–simulation (coDSS) is an extension of DSS, for application to two or more spatially 

depended variables (Soares, 2001). As such, simulation must reproduce the correlation, the individual 

distributions and the variograms. Specifically, the generated values must be reproduced based on a joint 

simulation or co–simulation. One of the biggest advantages of coDSS instead of sequential Gaussian co–

simulation (coSGS) or sequential indicator co–simulation (coSIS) is its ability to better reproduce the 

variograms and covariograms of the simulated variables. 
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This way, the process of the joint distribution simulation 

 j(�1, �2, … , �0k) = j(�1)j (�2|�1)…j(�0k | �1, �2, … , �0k−1) (24)

assumes Nv variables Z1(x), … , ZNv(x) that one intends to simulate. For instance, when considering 2 

variables and being Z1(x) the secondary variable means that this one has the major spatial continuity 

and is the first to be individually simulated. Subsequently, Z2(x) is conditionally simulated to the 

previous simulated values of Z1(x). Thus, in the spatial location of x0, the Z2(x0) values are generated 

based on the following conditional distribution law 

 j(�2(�0)|�2(�n)) = o2(�n), �1(�.) = o1p(�.), X = 1,+) (25)

whereas z1s (xi) represents the previous simulated values from Z1(x), z2(x0) are the experimental data 

and the eventually simulated values from Z2(x) around x0. 

After having the images of Z1(x) , obtained by DSS, the same algorithm is applied to the other 

variable Z2(x). One of the images of Z1(x) is assumed as secondary and to have a positive spatial 

correlation between Z1(x) and Z2(x), characterized by the correlogram ρ1,2(h). This means that both 

variables have the same spatial pattern statistics, e.g. variogram and global histogram. The Z2(x) values 

are generated, in any spatial location x0, from the conditional distribution laws of the previous simulated 

Z2(x) and Z1(x). The conditional distribution laws are defined, for each location x0, from the local means 

[z2(x0)]∗ and variance σSK2 (x0), obtained by co–estimation of z2(x0) based on the values z2(xα),  z1s (xi),i = 1, N. 

Given the fact of the conditioning variable Z1(x) being plentiful, co–located co–kriging is used for the 

calculation of local mean and variance, which is a linear combination of the selected values from z2(xα) 
around x0 and the know value z1s (x0) from the previous simulated image 

 [o2(�0)]vp2∗ = ∑ wn[o2(�n) − "2] + wx[o1p
0

n=1
(�0) − "1] + "2 (26)

The process of coDSS can then be summarized by the following algorithm (Soares 2001): 

1. Definition of a random path encompassing all nodes of x0 of a given regular grid to be co–

simulated; 

2. Calculation of the co–estimated local mean and variance of x0, which are respectively assumed 

to be, the collocated simple cokriging estimator [z2(x0)]csk∗  and the estimation variance σcsk2 (x0), 
conditioned to the experimental values z2(xα), the previously simulated values z2s (xα) and to 

the previously known simulated value z1(x0); 
3. Definition of the interval of FZ2(z) to be resampled, based on a multi–Gaussian distribution 

given by: 

4. G ([y(x0)]∗, σcsk2 (x0)), where [y(x0)]∗ = φ([z2(x0)]∗); 
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5. Calculation of a simulated value z2s (x0) from the previously defined distribution FZ2 (z), by 

doing: 

• Drawing of a value p from a uniform distribution U(0,1); 
• Drawing of a value ys of G ([y(x0)]∗, σcsk2 (x0)) : ys = G−1(p); 
• Calculation of the simulated value z2s (x0) = φ−1(ys); 

6. Return to 1 and loop until all N nodes have been visited and co–simulated. 

2.2 Basics on reservoir fluid flow simulation 

Fluid flow simulation of hydrocarbon reservoir models is one of the main tasks of a reservoir engineer. 

Reservoir dynamic simulation resorts to mathematical modeling to study the hydrodynamic behavior of 

fluids within the oil reservoir. An adequate simulation model is one that represents the main features of 

the system, accounting for their behavior, yet remaining simple enough so that its calculation time (flow 

simulation) is appropriate. 

The usage of numerical simulation allows the study of a given reservoir in detail, by using individualized 

cells, populated with relevant properties that enable representation of a realistic version of the system. 

The reservoir model is assembled by defining and populating the mesh of cells that fit the scale, 

dimension and spatial distribution of the properties to be represented (i.e. geological or engineering 

parameters). The end result is a representation of the reality in a discretized way, where rock and fluid 

properties are defined.  

Results for fluid flow simulation are obtained by calculating a set of flow equations of the fluids being 

transmitted from cell to cell. These flow equations are governed by the principle of mass conservation, 

combined with Darcy's law and the state equation. This system of partial differential equations describes 

the motion of all the phases of the fluid within the reservoir. 

2.2.1 Fluid flow concepts 

As previously mentioned, fluid flow equations, as used in reservoir engineering, are obtained from the 

combination of three basic equations, respectively, the continuity equation, Darcy’s law and the state 

equation.  

The continuity equation stems from the application of the principle of mass conservation of a known 

volume, through which occurs the flow of a fluid. The mass balance can be translated with the following 

equation: 

 ".����� − "������� = ∆" (27)

The terms minflow e moutflow correspond, respectively, to the mass that goes in or out of the known 

volume and ∆m refers to the mass variation in the volume element. 
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Darcy's law states that the flow velocity of a uniform fluid in a porous medium is proportional to a 

pressure drop over a given distance and inversely proportional to the fluid viscosity. 

 � = �̂ = − �� ����  (28)

The fluid velocity (u) is expressed in cm/s, the flow rate (Q) in U"3/W, the cross–sectional area of the 

rock (A) in  cm2 , permeability (k) in Darcy (D) , the fluid viscosity (µ)  in  cP (centipoise) and the 

pressure gradient (dp/dL) in atm/cm. 

Darcy's law applies only in the case of laminar flow (i.e. when in presence of a low order Reynolds 

number). Flow within the reservoir is assumed to be laminar, hence the assumption of validity of Darcy’s 

law, with the exception for specific situations such as very high injection and production flows in the 

vicinity of a well (Silva, 1997). 

State equation is a ratio used to represent the mass of the specific behavior of a compressible fluid as a 

function of pressure and temperature. The choice of the appropriate state equation is dependent on the 

type of fluid. Generally, as the flow is assumed to be isothermal, the formulation of the state equation 

will depend only on the pressure. 

Since the compressibility of a fluid is given by C = − 1V × ∂V∂P and its density by ρ = mV, the formulation 

of fluid compressibility can be made according to the following: 

 	 = − §" × ¨ ("§ )
¨] = 1§ ¨§¨]  (29)

Considering the three previously established equations, it is then possible to formulate the basic 

differential equation, formulated to describe fluid flow in the vicinity of a well. The analytical solutions 

of the equation can be obtained for various initial conditions and reservoir boundary conditions are 

applied to the description of the movement of fluids into the well. 

Considering the flow of fluid through a volume of thickness dr, located at distance r from the center 

(radial flow) and applying the principle of mass conservation, the following expression is obtained: 

 �§.����� − �§������� = 2ª«ℎ∅ �« ¨]̈  (30)

Where, inflow and outflow correspond respectively to the sections defined by r + dr and r. The volume 

of the element of width dr is given by 2πrh∅ dr. 
A simplification of the previous equation is given by: 

 ¨(�§)¨« = 2ª«ℎ∅ ¨]̈  (31)
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By applying Darcy’s law for a radial and horizontal flow, the flow rate can then be substituted by: 

 � = 2ª�ℎ«� ¨]̈«  (32)

Which will give us: 

 ¨̈« (2ª²ℎ«� § ¨]̈« ) = 2ª«ℎ∅ ¨]̈  (33)

Or, 

 1« ¨̈« (²§� « ¨]̈« ) = ∅ ¨]̈  (34)

Considering the previously defined state equation, the fundamental differential equation that regulates 

radial flow through a porous medium of a monophasic fluid can be obtained by the following expression: 

 1« ¨̈« (²§� « ¨]̈« ) = ∅	§ ¨]̈  (35)

This expression is nonlinear as it depends implicitly on the density, compressibility and viscosity of the 

fluid, as shown in the coefficients Kρµ  and ∅Cρ. 

2.3 History matching 

History matching is summarized as the process of calibrating a hydrocarbon model through 

improvements on the reservoir characterization based on the mismatch between the response given by 

the simulated model and the observed historical production. This task is an intrinsic part of the job of 

any reservoir engineer and/or field management professional.  

History matching’s importance is mainly attributed to the acknowledgment of: 

1. Uncertainty in reservoir characterizations; 

2. Economic reasons and their deep connection to the quality and quantity of the information used 

to describe a given reservoir; 

3. Field management decisions, based on predictions in terms of field production; 

4. Loss of information in the transition between the geological scale to the simulation scale;  

5. Production forecasting. 

Typically, history matching is performed at later stages of a reservoir’s life. Being a data driven process 

(i.e. based on historical field production data), the more available data there is, the stronger is the base 

for the history matching process to work on. This way, history matching can be considered as a method 

of continuous improvement and validation of the reservoir characterization, as production information 

is more and more available throughout the reservoir production life. 
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History matching also entails the problematics behind inverse problems. In short, there is a need to find 

a set of conditions that is responsible for the replication of a particular result. The problem behind this 

lies in the fact that inverse problems are almost never well posed. In the particular case of reservoir 

engineering, an infinite number of equally good solutions can exist, i.e. several different earth models 

originate the same production response (Carrera, et al. 2005). In fact, obtaining a multitude of equally 

good solutions (history matched models), allows the assessment of the posterior uncertainty associated 

with a given model. Many combinations of parameters can provide equally good history matching results 

and be located in different regions of the model parameter space. Such regions are termed local minima 

and may not be the global minima (optimal minima), or be located far from the global minima. On the 

other hand, the global minima, which is a representation of reality, can be the best solution for a given 

model but may not represent the truth (Arnold D. , 2008). 

Although numerical representations of reservoir models can be considered an approximation of the real 

subsurface geology, a multitude of parameters are involved in their description. This increases the 

difficulty in the history matching process and introduces the problem of nonlinearity, as the relationships 

between all the parameters involved in the description of the reservoir model, are complex. Nonlinearity 

of inverse engineering problems, and in particular in the case of reservoir engineering, tries to be 

addressed by the implementation of history matching algorithms and methodologies that make use of 

tools and concepts capable of achieving a calibration of the reservoir model in a fast, yet thorough 

approach. 

In a typical history matching workflow, the model (or a set of possible models) generated by geologists 

is passed on to the reservoir engineering team, which then applies changes directly to the static and/or 

dynamic assumptions in order for the fluid flow simulation to be able to replicate the real dynamic 

response. In this process of perturbation, a variety of parameters can be used. They can both be of 

geologic nature (porosity, permeability, fault transmissibilities, etc.) or engineering parameters (relative 

permeabilities, saturations, etc.). A generalized workflow for reservoir modeling with history matching 

and forecasting is shown in Figure 4: 

 

Figure 4 – Generalized workflow for reservoir modeling with history matching and forecasting 

(Streamsim, 2016). 
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Knowledge of the reservoir’s heterogeneity is required for its full characterization and essential for 

predicting its behavior. The characterization step should include as much information as possible such 

as cores, logs, seismic, analogs, outcrops. After building the reservoir model(s) that describe, as best as 

possible, the known reality, a sensitivity analysis is carried out, using a numerical fluid flow simulator 

to obtain the dynamic responses of the static models. These dynamic responses will then be submitted 

to evaluation through the use of an objective function. This objective function should reflect the 

mismatch between the observed and the simulated production data. It can be summarized as a difference 

between the observed data and the simulated data. After the calculation of the objective function for 

the dynamic responses, a decision is made on whether to screen out the calculated models for refinement 

or if the models need further tuning (or perturbation) of the geological and engineering parameters. This 

process will run consecutively, in a loop, until a final set of history matched models is chosen and applied 

in the reservoir’s production forecasting. 

A list of commonly perturbed geological and engineering parameters is provided by (Williams, et al. 

1998). 

Table 1 – Geological and engineering parameters commonly perturbed in history matching. 

Data Type Data 

Pore Volumes Volume 

Net–to–Gross (NTG) 

Porosity 

Permeability or 

Transmissibilities 

Horizontal 

Vertical 

Relative Permeabilities Curves 

End–Points 

Capillary Pressures  

Contacts Gas–Oil Contact (GOC) 

Oil–Water Contact (OWC) 

Compartments Gas–Oil Contact (GOC) 

Oil–Water Contact (OWC) 

Fault Location 

Transmissibility 

Rock Compressibility 

Saturations Irreducible Water Saturation 

Oil Residual Saturations 

Aquifer Size (affects Pore Volume) 

Strength (affects Permeability) 
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History matching can be performed either manually or in an assisted manner. Manual adjustment is 

characterized by being a time consuming process of trial and error. Any type of parameter perturbation 

or combination of perturbations have to be tested by running a dynamic simulation, which is then 

followed by an interpretation of the results, followed by the drawing of conclusions on what needs to be 

additionally changed in order to further improve the match, or on what changes are dependent or 

influent on another. Due to this, manual history matching should be a task reserved only to professionals 

with deep knowledge on all of the involved geological and engineering concepts in order to preserve the 

consistency of the perturbed model with what is observable and possible to occur in reality. 

Alternatively to manual methods, assisted history matching is the process used to automate the manual 

adjusting of reservoir parameters, as previously described. It is a process that makes use of an 

optimization algorithm that tries to find the best parameter combination responsible for the 

minimization of an objective function. The calculation of the objective function and the result of this 

calculation is the base on which any algorithm decides if a given response is better (has a lower misfit 

value) than another. This way, it is able to decide if a given type of perturbation is responsible for a 

better dynamic response.  

The main advantage of assisted history matching is its ability to greatly reduce or minimize time–

consumption by leaving professionals free to address other tasks or being able to subdivide the process 

in stages where human intervention is unnecessary. Another equally big advantage of assisted history 

matching is having the possibility to explore a much wider spectrum of parameter perturbations. 

2.3.1 Geostatistical history matching 

In today’s industry, the processes of history matching and geostatistical modeling are still widely 

considered as two separate stages of the reservoir modeling workflow. 

Over the past decades, significant developments have been taking place, regarding computer technology. 

On the other hand, recent years have shown great advances in the development of new history matching 

techniques. Latest efforts have been focusing on combining both processes. 

If fact, recent years have been proliferous in terms of research being made on this subject, with many 

authors addressing the issue of combining history matching with geostatistical modeling, making it a 

subject of growing importance in the industry. 

Bennett & Graft (2002) proposed a methodology to integrate a history matching tool based on gradient 

calculation with the combining of different geological settings. One of the principles of the method was 

the selection or rejection of static models according to the difference between the simulated and observed 

data. The process consisted in the generation of multiple realizations that were used to perform 

adjustments in the reservoir model, by using deterministic reservoir parameters, such as relative 

permeability. 
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Tureyen & Caers (2003) proposed a methodology for optimization on two levels, by considering one of 

the levels on a geological scale and another on the simulation scale.  

Gross et al. (2004) presented a method based on streamline simulation, combined with geostatistical 

sequential simulation. A similar method of using streamline simulation combined with models being 

generated by geostatistical simulation was also approached by Le Ravalec–Dupin and Fenwick (2002). 

Caers (2002) addressed the combination of history matching with geostatistical modeling through the 

use of Markov Chain techniques. Later on, Caers (2003) showed a gradual deformation method also 

combined with streamline simulation. In works published in 2005 and 2006, Caers and Hoffman (2005) 

(2006) explored methods of history matching by applying regional perturbation of reservoir models with 

the use of geostatistical modeling techniques. Suzuki and Caers (2006) submitted a stochastic search 

method, designed to search for reservoir models that matched the historical production data considering 

a “similarity measure” between likely structural model realizations. In 2007, Hoffman & Caers (2007) 

submitted a study where history matching was achieved by jointly perturbing local facies proportions 

and their spatial distribution. 

Maschio et. al (2008) developed a framework to integrate geostatistical modeling and history matching, 

where geostatistical images were treated as matching parameters, using genetic algorithm and direct 

search methods. 

Mata–Lima (2008) proposed a methodology to reduce the uncertainty in reservoir characterization by a 

process of iterative updating of permeability realizations using DSS and co–DSS. 

Le Ravalec–Dupin & Da Veiga (2011) proposed an algorithm for continuously modifying realizations 

representing porosity or permeability fields using co–simulation. The realizations resulting from the co–

simulation process would depend on linear correlation coefficients between considered random functions, 

hence resulting in induced variations in the realizations by perturbing these correlation coefficients. 

Soares et. al (2014) proposed a geostatistical methodology for history matching conditioned to seismic 

data. In this approach, the stochastic models simultaneously match the production data for a given 

reservoir, while producing a synthetic seismic reflection data that matches the observed one. 

Although not addressing the issue, Kashib & Srinivasan (2006) argued that the influence of the 

variogram modeling in the coupling of geostatistical simulation with history matching, is an important 

research topic. 
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Figure 5 shows the general workflow adopted in GHM studies. 

 

Figure 5 – Generalized workflow for GHM adapted from (Unisim, 2016). 

2.4 Uncertainty Quantification 

Engineering problems often rely on the integration of real world variability and probabilistic behavior 

on the finding of solutions. The purpose of uncertainty quantification is to provide means of quantifying, 

characterizing, investigating and managing the uncertainty associated to these problems. 

For the specific case of reservoir simulation, whether static or dynamic, uncertainty comes primarily 

from the lack of data of the reservoir, measurement errors for the input data and complexity of the static 

and dynamic phenomena. In order to assess the impact of reservoir static and dynamic uncertainties in 

reservoir history matching, uncertainty in geologic and engineering parameters needs to be explored 

under a Bayesian framework (Abdollazdeh, et al. 2012). 

Reservoir uncertainty quantification is an essential part of reservoir management in which, history 

matched reservoir models are used for production optimization and forecasting, incorporated with 

estimation of the uncertainty. By more deeply understanding and quantifying these sources of 

uncertainty, uncertainty uuantification provides the ability to make decisions with known levels of 

confidence (Christe et al. 2006). 
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2.4.1 Bayesian theory 

The process of calculating the input parameters that match a given observed data is referred to as an 

inverse problem (Carrera, et al. 2005). In a Bayesian framework, if p(m) is the prior distribution of the 

input parameters (m), the goal is to update this knowledge and find the distribution of parameters that 

best fit the observed data (o). A rigorous way to incorporate the new information is to use the Bayes 

rule, 

 �("|V) = (�(V|")�("))�(V)  (36) 

where p(m|o) is the posterior distribution conditioned on V, and �(V|") is the likelihood function, which 

is the probability of the data, given the model m is true. 

In complex representations of the reality, such as is the case of reservoir models, analytical formulation 

of the posterior from the prior is unfeasible as the likelihood implies complex forward simulations of the 

processes. Most importantly, the denominator in the Bayes rule equation is generally unknown.  

These issues are resolved by Monte Carlo Markov Chains (MCMC) techniques. MCMC techniques makes 

use of ratios of densities, allowing them to sample from unnormalized distributions and obtaining samples 

from the posterior distribution (Robert & Casella, 2004). 

The choice of prior distribution is a critical step. Rojas et al. (2009) have shown that, in a multi–model 

framework, the posterior plausibility of the various conceptual models heavily depends on the prior 

model probabilities. Ideally, extremely large datasets could be acquired to eliminate the influence of the 

choice of prior. This is unrealistic for oil reservoir applications due to the large number of uncertain 

parameters and to the sparsity of data. A possible strategy is to obtain expert opinion on how to identify 

a reliable prior.  

The likelihood function is defined by the error model selected for the analysis (Kavetski, et al. 2006). 

Yustres et al. (2012) remark that the correct construction of the likelihood function and the identification 

of the sources of uncertainty are essential to carry out a meaningful analysis. As previously mentioned, 

a misfit value is calculated to quantify the discrepancy between simulated and observed data. The most 

common choice is to assume that the misfit dominates other sources of errors and that the errors are of 

Gaussian nature. 

This way, by considering that the likelihood L is given by: 

 � = �(V|") ∝ D−¶  (37)

with M being the misfit value. M can be obtained by the following expression. 

 

  = − �V¸(�(V|")) = −�V¸ (�) (38)
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Apart from the problems related to the choice of prior and likelihood distributions, the main limitation 

of Monte Carlo approaches comes from the computational cost of simulating the flow responses, 

particularly when in presence of complex physical processes. Dynamic response evaluation is necessary 

at each iteration (i.e. for every step of perturbations) resulting in an intractable computational cost. 

2.4.2 Adaptive Stochastic Sampling algorithms 

Adaptive Stochastic Sampling algorithms are a branch of optimization algorithms commonly used in the 

oil industry for solving inverse problems, such as is the case of history matching. Several of these 

algorithms were inspired by natural phenomena. Some of the most commonly used Adaptive Stochastic 

Sampling algorithms are: 

• Genetic algorithms 

• Simulated Annealing 

• Evolutionary algorithms 

• Swarm algorithms 

Evolutionary and swarm algorithms are among the most recent algorithms. The main difference between 

them is their ability to find multiple local minima, which is an essential characteristic for achieving a 

realistic quantification of uncertainty prediction. Swarm algorithms take advantage of the tracing of the 

actuating particles for achieving a balance between exploration and exploitation of the search space, in 

the search for an optimal solution. 

The present work makes use of a particular case of the family of swarm algorithms, namely the PSO 

algorithm, which is explained in the following chapter. 

2.4.2.1 Particle Swarm Optimization 

PSO is a population based evolutionary, developed by Kennedy and Eberhart in 1995 (Kennedy & 

Eberhart , 1995). It is a stochastic optimization technique inspired by the social behavior of bird flocking 

or fish schooling.  

The principle behind the PSO algorithm implies considering a search space where a swarm of particles 

is randomly scattered. Apart from a position in the search space domain, all particles have a specific 

velocity at which they update their position.  

Every particle is a candidate to the solution of the problem and retains its previous best position. All of 

the positions of all of the particles are simultaneously compared at every step of the algorithm by a 

fitness function evaluation. From this, a global best position is obtained, which is then responsible (along 

with all the best positions of all different particles) to converge the solution of the problem to a minimum 

value. 
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The PSO workflow can be summarized in the following steps (Mohamed, 2011): 

1. Initialization of the swarm by assigning a random position in the search space to each particle 

with sensible random velocity. 

2. Evaluation of the fitness function for each particle. 

3. For each particle, update the position and value of pbest – the best solution the particle has seen. 
If current fitness value of one particle is better than its pbest value, then its pbest value and the 
corresponding position are replaced by the current fitness value and position, respectively. 

4. Update the global best fitness value and the corresponding best position. 

5. Update the velocities and positions of all the particles. 

6. Repeat steps 2–5 until a stopping criterion is met. 

Other common stochastic sampling algorithms used for uncertainty quantification are the Hamiltonian 

Monte Carlo algorithm, the Neighborhood Algorithm and the Multi–Objective PSO algorithm, which is 

an extension of the PSO algorithm for the case of multi–objective optimization (more than one objective 

function),. 

For further details on these algorithms, the reader is encouraged to consult the works made by Mohamed 

(2011) and Mohamed et al. (2011).
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3 METHODOLOGY WORKFLOW 

Within the scope of this work a new algorithm for GHM is proposed, following the works on 

regionalization–based history matching algorithms done by Hoffman & Caers (2005) , Mata–Lima (2008) 

and Le Ravalec-Dupin & Da Veiga (2011). The proposed methodology couples Adaptive Stochastic 

Sampling with zonation–based geostatistical history matching. 

The proposed algorithm encompasses a two–stage optimization process. The first stage, or the inner loop 

of the algorithm, is the stage where the geological trends of the reservoir, in terms of porosity and 

permeability, are perturbed locally, under a regionalization model using DSS with multi–distribution 

functions and spatial continuity patterns (Nunes, et al. 2016). After each iteration, perturbation on the 

porosity and permeability models are assimilated through geostatistical conditioning, by resorting to 

best porosity and permeability cubes, generated at the end of each iteration. These volumes will serve 

as secondary variable (soft data) along with a corresponding correlation coefficient volume that is set 

according to the dynamic evaluation of the data. The calculation of these correlation coefficients are 

based on the mismatch between observed and simulated values given by the calculation of an objective 

function. 

The second loop of the proposed algorithm encompasses the first loop and is responsible for exploring 

the uncertainty in the large scale geological parameter space: variogram parameters, porosity and 

permeability histograms and fault transmissibilities that interconnect the different zones of the reservoir. 

For this, a workflow using Adaptive Stochastic Sampling and the PSO algorithm is used. At each 

iteration, the PSO algorithm optimizes the uncertain large scale parameters which are then used as input 

for the inner GHM loop. The process iterates until a final number of iterations is reached, or when 

convergence of the parameter perturbation and misfit value is above a pre–defined threshold. 

The proposed methodology is synthetized by the following workflow: 

First stage (Geostatistical history matching with zonation; Figure 6): 

1. Regionalization of the reservoir area according to a given fault model and area of influence 

of the wells resulting in a cube with a zone being assigned for each well or for a group of 

wells; 

2. Simulation of a set of permeability and porosity realizations through DSS, honouring the 

well data, histograms and spatial distribution revealed by the variogram; 

3. Evaluation of the dynamic responses for each of the realizations and calculation of the 

mismatch between the dynamic response and real production data, using an objective 

function; 

4. Calculation of a correlation coefficient between each dynamic response and generation of a 

cube composed of different correlation coefficients per zone; 

5. Creation of a composite cube of porosity and permeability, with each region being populated 

by the corresponding realization with the lowest mismatch, calculated in step 3; 
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6. Return to step 2, using co–DSS and the cubes calculated in steps 4 and 5 as local correlation 

coefficient and soft data, respectively. The algorithm is expected to run up to a maximum 

number of iterations, or until a pre–defined mismatch value is reached. 

 

Figure 6 – GHM workflow (First stage). 

Second stage (Coupling with Adaptive Stochastic Sampling): 

The second stage can be considered as an outer loop, encompassing the results obtained by the first 

stage. At each iteration of the zonation–based GHM loop, a best porosity and permeability cube is 

obtained, along with their respective correlation coefficient cubes. A process of matching relevant 

engineering and geological parameters will then occur, using Bayesian inference and Adaptive Stochastic 

Sampling. The second phase runs for a maximum number of iterations. 

For this work, the parameters considered for perturbation were the variogram parameters being used to 

generate the geostatistical realizations on the inner GHM loop, histogram perturbation and fault 

transmissibilities. Other geological or engineering parameters can be used with the same proposed 

procedure. 

The flowchart on Figure 7 illustrates both stages of the proposed algorithm methodology. 



 

- 25 - 

 

Figure 7 – Coupling with Adaptive Stochastic Sampling algorithm. (Second stage) GHM is 

shown in detail in Figure 6 

3.1 Dynamic evaluation 

3.1.1 Objective function 

The objective function is formulated as a mathematical expression that measures how close a problem 

solution (simulated data) is towards an optimal value (observed data). The definition of such a metric 

is critical in order to achieve convergence in the iterative procedure.  

The most commonly used objective function for history matching is the least square norm, which 

calculates a measure of the discrepancy between the simulated and observed value, returning a 

“mismatch” value, M. The least squares norm formula to be used in the present work is defined as: 

  = "XY ∑ (=�,�¼p − =�,p.½)2
2�2

�
�=.

 (39)

Where Rt,obs is the observed, or historic value of a given variable at timestep t, Rt,sim is the simulated 

value of a given variable at timestep t , σ2  is the error, or standard deviation, associated to the 

measurement of a given variable at timestep t. 
3.1.2 Correlation coefficient 

In GHM (first stage of the proposed algorithm) convergence is assimilated through geostatistical soft 

conditioning. This means that the perturbation being made by the many realizations generated by the 
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algorithm, will be carried on to the following iterations by means of conditioning, according to its match 

quality and the degree to which they are close to the real observed data. The measure adopted to depict 

this degree of closeness to the observed data is done through a correlation coefficient applied to every 

simulated response. 

Due to the importance of the correlation coefficient in the proposed GHM workflow, it is crucial to make 

sure its value mimics the misfit value obtained by the objective function. Meaning, a process that 

integrates calculations of misfit and correlation coefficients should guarantee that, when calculated, these 

values change symmetrically and in the same proportion, under different configurations of observation 

data curves. 

This issue was also tackled within the scope of this work, with the development of a new approach to 

calculate a correlation coefficient based on the misfit value. The following step–by–step list describes the 

calculation of the correlation coefficient being used by the GHM algorithm. 

1. For all timesteps and for the production variable to be matched, calculate the response 

difference, or a deviation from the response, towards the observed data and the corresponding 

error threshold, respectively ∆sim and ∆sigma, according to the following: 

 ∆p.½ = ∣=(�,�¼p) − =(�,p.½)∣ (40)

 ∆p.Â½Ã= ��2 − ∆p.½ (41)

2. The next step is the calculation of the final deviation towards observed data for a given timestep, 

∆obs , according to the following: 

 ∆�¼p= {=�,�¼p − (∆p.½ + ∆p.Â½Ã) =�,�¼p ≥ ∆p.½ + ∆p.Â½Ã 0 =�,�¼p < ∆p.½ + ∆p.Â½Ã  (42)

3. After getting the final deviation value of the simulated response, there is a need to normalize 

this value in order to get a value from 0 to 1. The calculation of each timestep correlation 

coefficient, xt ,is done by the following calculation: 

 �� =
⎩{⎨
{⎧1 − ∆p.½(∆p.½ + ∆p.Â½Ã + ∆�¼p) ∆p.½ ≤ ∆p.Â½Ã + ∆�¼p 

0 ∆p.½ > ∆p.Â½Ã + ∆�¼p
 (43)

4. The final correlation coefficient for a given response is then obtained by averaging all xt from 

all timesteps according to the following: 

 � = ∑ ��0�=1+  (44)

Where Rt,obs is the observed, or historic value of a given variable at timestep t, Rt,sim is the simulated 

value of a given variable at timestep t, σ2 is the error of the measurement at timestep t. 
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This method ensures a degree of compatibility between the misfit value resulting from the objective 

function and the correlation coefficient to be used in the co–simulation of a new set of models. It also 

takes into account different configurations of obtaining simulated values and attempts to make the 

calculation of the resulting correlation coefficients consistent, regarding the relative position between 

observed and simulated values as well as their respective error threshold. For further explanation, Figure 

8 depicts a timestep of four possible cases of simulated data value when compared to the real data. 

 

Figure 8 – Correlation coefficient calculation on four possible cases of simulated vs observed 

data. 

Figure 8 shows, from the first through the third plot, the generic case for simulated value over observed 

value at a given timestep, regardless of the sigma interval. The fourth plot shows a case where the 

simulated value is inside the sigma interval, but the sigma value goes below 0. In this case, since the 

simulated response is half way close to the observed value, the correlation coefficient is calculated as 0.5. 

This is particularly important for specific cases where observed values are close to zero at several 

timesteps, such as is the case of Water Production near the beginning of the simulation (before water 

breakthroughs). By looking at the fourth plot, it is possible to observe that if this case were not to be 

accounted for, the correlation coefficient given by the normalization of the simulated value over observed 

value would return a much lower �� value (in some cases even almost zero or division by zero), when in 

reality the simulated value is located at about half the lower bar of the accepted error threshold, for the 

specific timestep. In this case, the value for the timestep correlation coefficient is calculated as 0.5. 

3.2 Zonation–based Geostatistical history matching 

Zonation methodologies (also known as regionalization or compartmentalization) are a common 

approach in reservoir engineering and history matching, in order to reduce the number of parameters of 

a given reservoir description. The zonation methodology, as adopted in petroleum reservoir models, 

consists on grouping grid blocks of a given reservoir’s static or dynamic model in order to create sub–

regions with property values assumed to be either constant, correlated or homogeneous. The calibration 

of these properties is then obtained by the process of history matching, which in this case, is the 
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adjustment of the parameters on these zones, by applying perturbation aimed towards reproducing the 

observed production data of the reservoir. 

One of the objectives of this work was to explore different regionalization methodologies and their 

influence on the history matching quality and convergence. The following sub–chapters are a 

presentation of the explored zonation methodologies. 

3.2.1.1 Global zonation 

As a way of testing the influence of having a no zonation based approach, a global zonation methodology 

was adopted. In this zonation approach, there is only a global region that encompasses the entire 

reservoir area. The global zonation is therefore used as a form of depicting the type of conditional 

assimilation applied by the iterative geostatistical conditioning process, under a global correlation 

coefficient. Since all reservoir wells are encompassed by this global region, a global correlation coefficient 

is used for the whole reservoir and calculated according to the match quality of simulated FIELD data 

over observed FIELD data (Field Oil Production Rates, Field Water Production Rates and Field Gas 

Production Rates). Figure 9 illustrates a top view of the Global zonation pattern: 

 

Figure 9 – Global zonation pattern. 

3.2.1.2 Circular zonation 

A circular area of influence around each well is also considered an important aspect when carrying out 

regionalization approaches. Within the scope of this work a zonation method exploring such pattern was 

also considered. In this regionalization method, eleven different zones are considered. Ten of them 

corresponding to the different well groups of the reservoir and one reserved for the area outside. 

Permeability and porosity are updated inside each individual area according to the mismatch between 

the observed data and simulated production data of the corresponding wells or well groups (Well Oil 

Production Rates, Well Water Production Rates and Well Bottom Hole Pressure). The same going for 

other regionally based methods. 
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To avoid overlapping areas, the area of influence considered for each well, or groups of wells, was defined 

by a distance of 500 meters from every well completion node (roughly 4 to 5 grid blocks). This resulted 

in the multilayered spherical shaped pattern shown in Figure 10. 

 

Figure 10 – Circular zonation pattern. 

3.2.1.3 Square zonation 

In order to compare results observed on different zonation criteria, there was a need to set up a 

regionalization pattern that did not take into account a specific zonation criteria, such as circular areas 

of influence, geological consistency or fluid flow pattern. 

The idea behind using a squared zonation was to observe the contrast between adopting a non–geological 

consistent zonation methodology and a geological consistent zonation methodology. In this case, the 

adopted sub–regions are square shaped, disregarding not only any geological consistency of parameter 

perturbation but also well production areas of influence and relevant geological features such as fault 

presence. Different well groups are also encompassed by the same regions, meaning that the update of 

petrophysical models constrained to production data is disturbed. This resulted in the multilayered 

square shaped zonation, shown in Figure 11: 

 

Figure 11 – Square zonation pattern. 
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3.2.1.4 Voronoi zonation 

Many GHM approaches use Voronoi polygons to address zonation. The main advantage behind Voronoi 

zonation is its ease of use, its ready–to–use implementation on several available software packages and 

the ability to efficiently partition 2D or 3D space between a collection of points. The outcome of a 

Voronoi zonation method is such that each subdivided region (also known as Voronoi cell or domain) 

consists of a grouping of all points in the space that are closer to a specific site than any other, in this 

case well locations. 

As in the circular zonation methodology, the regionalization by Voronoi polygons is also a type of 

representation of the area of influence of each well or group of wells. Figure 12 shows the zonation 

resulting from the Voronoi partition and shows the existence of a zone for every group of well (zone 1 

to 10). Some regions had to be tweaked in order to include all wells in a specific group (i.e. WELL4 and 

WELL4A) or to associate injector wells to a given region (i.e. INJ6 and B). The final obtained pattern 

is the multilayered Voronoi type regionalization shown in the Figure 12. 

 

Figure 12 – Voronoi zonation pattern. 

3.2.1.5 Fault and Streamline–based zonation 

After interpreting the results obtained from the running of several GHM loops using the regionalization 

patterns previously described, a hybrid-like regionalization pattern was adopted in order to capture the 

accuracy obtained by the different regionalization methods in each specific case. For this, a 

regionalization method containing aspects of geological consistency, fluid flow paths along with their 

area of influence and fault zonation, was proposed. This regionalization method was primarily conceived 

in order to improve mismatch results on the GHM stage, while maintaining a degree of geologic 

consistency during parameter perturbation. As for the second stage, concerning the integration with 

Adaptive Stochastic Sampling, fault transmissibility perturbation is addressed, along with other 

geological parameters such as variogram ranges of influence and property histograms. This stresses the 

point of having a regionalization methodology which is able to provide a support, which is compatible 
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with the type of sampling perturbation being addressed. Considering a geologically consistent zonation 

method to serve as a strong base for geostatistical perturbation, by addressing preferential flow paths, 

the area of influence for each well and fault zonation, is expected to provide better and more efficient 

match qualities under Adaptive Stochastic Sampling perturbation. 

In terms of areas of influence, the assumption of a radius of influence, made in the circular zonation 

method, was replaced by the area consisting of the most common flow paths for production, given by 

streamlines. For this, a number of flow simulations were ran over several petrophysical models with a 

global regionalization approach matched towards the observed production data (in an attempt to reach 

an unbiased common flow pattern, in terms of any regionalization assumptions). 

Figure 13 illustrates a top view example of the of the well production streamlines for a given realization. 

 

Figure 13 – 2D top view of production streamlines from different wells. 

Figure 14 illustrates the 3D view of the example given above. Note the characteristic shape of the 

production streamlines associated with each well and the way they overlap. 

 

Figure 14 – 3D view of production streamlines from different wells. 
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In order to arrive at a fault and streamline–based zonation, fault locations were considered and integrated 

with production streamline data. In this way, it is possible to observe preferential flow paths and their 

interference with existing faults in the model. Water production streamlines were selected, since they 

are the hardest to match in the present case study. 

Figure 15 is an example of the preferential flow path for water production in the regions being associated 

respectively with well group 1, 8, 9 and 10. The color scheme represents the most commonly visited cell 

blocks (blue – hardly visited, to red – highly visited), considering flow path from a specific well group, 

over the course of a whole simulation. 

  

  

Figure 15 – Preferential flow path for water production, for well group 1 (top left), well group 9 

(top right), well group 8 (bottom left) and well group 10 (bottom right). 

In Figure 15, the grey lines on each figures, represent the total production of water from each individual 

well at the end of the streamline simulation. Each line connects a producing well to one or more injectors. 

The thicker the line, the higher the volume of produced water. Also note the existence of barriers to 

fluid flow, being introduced by the presence of some of the faults of the considered fault model 

(represented in white). 

By aggregating the extracted information related to common flow paths for the dynamic model, 

presented above and taking into account a fault-based zonation criterion, the proposed regionalization 

method, composed of a hybridization of these two concepts, is presented in Figure 16. 
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Figure 16 – Fault and Streamline zonation–based pattern. 

Figure 17 is a 3D view of the adopted regionalization. It is possible to observe the pattern of overlapping 

and enveloping of flow regions, previously observed in the streamline study, being replicated. 

 

Figure 17 – 3D view of the Fault and Streamline zonation–based pattern. 

3.3 Coupling with Adaptive Stochastic Sampling 

One of the main objectives of this work is the development of a methodology able to couple GHM with 

Adaptive Stochastic Sampling. This allows the uncertainty quantifying on two different levels. GHM 

algorithm aims at quantifying uncertainty of the petrophysical properties assuming some a priori 

knowledge related with large scale geological parameters, e.g. the spatial continuity pattern. Adaptive 

Stochastic Sampling is able to quantify the uncertainty related with the geological parameters assumed 

by the geostatistical algorithms that are, for example, responsible for reproducing a given spatial 

continuity pattern. In addition, Adaptive Stochastic Sampling is able to assess uncertainty over 

engineering parameters that are set to be perturbed and that influence dynamic match.  
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The conventional GHM procedure used in the inner loop of the proposed approach (Chapter 3.2), 

assumes stationarity in the geostatistical parameters. However, there might be a huge lack of information 

about the correct interpretation and setting of these parameters. As a consequence, there is a lot of 

uncertainty on the resulting petrophysical models. 

To quantify this uncertainty, the conventional history matching approach is coupled with an Adaptive 

Stochastic Sampling algorithm, to consider the uncertainty related with these parameters. In this specific 

case study, the considered uncertainty relates with the spatial continuity model of the data, represented 

by the variogram model parameters and the property histogram definition. Fault transmissibilities 

acquire a special relevance in terms of parameter uncertainty in GHM with a regionalization method 

based on fault presence. To tackle this issue, uncertainty quantification by perturbation of fault 

transmissibilities was also addressed. 

PSO was used as the optimization algorithm for sampling the parameter space. A total of 17 parameters 

were perturbed in the coupling stage of the proposed multi-level methodology. As opposed to using a 

fixed value for the parameters mentioned above, uniform distributions (or discrete uniform, in the case 

of variogram ranges of influence) were assumed as a way of enveloping the a priori uncertainty for every 

specific parameter. The prior distributions are used by the stochastic sampling algorithm to sample the 

parameter space and converge to optimum parameter values. 

3.3.1 Parameter uncertainty 

3.3.1.1 Variogram perturbation 

The variogram model is a key aspect to any geostatistical modeling procedure. Nevertheless, variogram 

modeling is a task that is highly prone to uncertainty due to the lack of experimental data for reliable 

calculation of experimental variograms. Since the true variogram of a given variable is unknown, a 

variogram model is fitted to an experimental variogram retrieved from the available experimental data. 

Unfortunately, variogram estimation from experimental data can be difficult due to a wide array of 

aspects, such as lack of data or inadequate data location. 

The uncertainty parameters related with a variogram model, as for example variogram directions and 

ranges of influence, can be assessed by generating multiple variogram models that fit equally the 

experimental variogram. Added to that, when considering the specific variogram parametrization of a 

given petrophysical property, multiple stochastic simulations will result in a number of equiprobable 

spatial distribution models, allowing the assessment of the spatial uncertainty associated with a given 

property. It is of high importance to be able to quantify variogram uncertainty, in order to ensure that 

the variogram estimates are sufficiently accurate for the task at hand. 

Within the scope of this work, uncertainty was assumed to exist in the horizontal and vertical ranges of 

influence for both porosity and permeability variograms. The considered semivariogram model was 
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exponential, with 0.1 nugget effect. The adopted parameterizations for porosity and permeability ranges 

are summarized in Table 2 and Table 3, respectively, and illustrated in Figure 18 and Figure 19 , 

respectively. 

Table 2 – Uncertainty Quantification parameters for Porosity variogram ranges. 

Property Parameter Variable Name Distribution Type Distribution Range 

Porosity 
Horizontal. Range $pororange1 Discrete Uniform [40, 80] 

Vertical. Range $pororange2 Discrete Uniform [10, 30] 

 

Horizontal Direction Vertical Direction 

  

Figure 18 – Illustration of the uncertainty in Porosity ranges. 

Table 3 – Uncertainty Quantification parameters for Permeability variogram ranges. 

Property 
Parameter 

Description 
Variable Name Distribution Type Distribution Range 

Permeability 
Horizontal. Range $permrange1 Discrete Uniform [40, 80] 

Vertical. Range $permrange2 Discrete Uniform [10, 30] 

 

Horizontal Direction Vertical Direction 

  

Figure 19 – Illustration of the uncertainty in Permeability ranges. 
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3.3.1.2 Histogram perturbation 

Uncertainty is also part of existing experimental data, used as hard data for generating geostatistical 

realizations. In fact, available appraisal data might not reproduce the true histograms for porosity and 

permeability of a given field, due to the fact that appraisal wells are often aimed at target areas where 

petrophysical properties maximize the chance of hitting oil. The bias in terms of the location of appraisal 

wells affects the property histograms. To address this issue, perturbation on porosity and permeability 

histograms was considered and the distributions retrieved from the experimental data were approximated 

in terms of Gaussian mixture models. Each Gaussian family was optimized in terms of facies proportions 

and facies mean values. Table 4 summarizes the parameter distributions and thresholds assumed for the 

porosity histogram perturbation. 

Table 4 – Uncertainty Quantification parameters for Porosity histogram perturbation. 

Property 
Parameter 

Description 
Variable Name Distribution Type Distribution Range 

Porosity 

Facies 2 Proportion $poro_fac_2 Uniform [0.0, 0.3] 

Facies 1 Mean $poro_mean_1 Uniform [0.15, 0.19] 

Facies 2 Mean $poro_mean_2 Uniform [0.19, 0.23] 

Figure 20 illustrates the parameter distributions and thresholds assumed for the porosity histogram 

perturbation. 

 

Figure 20 – Illustration of the uncertainty in the Porosity histogram. 
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Table 5 summarizes the parameter distributions and thresholds assumed for the permeability histogram 

perturbation: 

Table 5 – Uncertainty Quantification parameters for Permeability histogram perturbation. 

Property 
Parameter 

Description 

Variable 

Name 

Distribution 

Type 

Distribution 

Range 

Permeability 

Facies 2 

Proportion 
$perm_fac_2 Uniform [0.7, 1.0] 

Facies 1 Mean $perm_mean_1 Uniform [–1.5, 1.5] 

Facies 2 Mean $perm_mean_2 Uniform [1.5, 3.0] 

 

Figure 21 illustrates the parameter distributions and thresholds assumed for the permeability histogram 

perturbation. 

 

Figure 21 – Illustration of the uncertainty in the Permeability histogram. 

3.3.1.3 Fault transmissibility perturbation 

Fault properties are incorporated in dynamic simulation by using transmissibility multipliers. 

Transmissibility multipliers are a function of the static properties of the fault zone and of the grid–

blocks in which they occur. By considering geological factors that influence the definition of fault zones, 

dynamic simulation benefits from the construction of high resolution, geologically driven, fault 

transmissibility models. However, fault interpretation is a task prone to uncertainty, depending on the 



- 38 - 

skills of the professional, regarding geological knowledge and sensitivity. As a result, factors like fault 

presence or location can be highly affected. 

On the other hand, the mere identification of a fault is not enough, similar fault types and compositions 

may have different equivalent permeability. To tackle this issue, average values of fault permeability 

and thickness are predicted empirically from petrophysical and geometrical data of the reservoir model, 

which result in a single parameter describing fault transmissibility, assigned to each fault. To address 

this issue, uncertainty quantification regarding fault transmissibilities was carried out. Relevant faults 

were identified and marked out for parameter perturbation. Table 6 summarizes the assumed parameter 

distributions adopted for fault transmissibilities. 

Table 6 – Uncertainty Quantification parameters for Fault transmissibility perturbation. 

Property Element 
Variable 

Name 

Distribution 

Type 

Distribution 

Range 

Fault 

Transmissibilities 

Fault 2 $ftrans2 Uniform [0.0, 1.0] 

Fault 3 $ftrans3 Uniform [0.0, 1.0] 

Fault 5 $ftrans5 Uniform [0.0, 1.0] 

Fault 6 $ftrans6 Uniform [0.0, 1.0] 

Fault 7 $ftrans7 Uniform [0.0, 1.0] 

Fault 8 $ftrans8 Uniform [0.0, 1.0] 

Fault 9 $ftrans9 Uniform [0.0, 1.0] 

 

Figure 22 illustrates the assumed parameter distributions adopted for fault transmissibilities: 

 

Figure 22 –Illustration of the uncertainty in fault transmissibilities. 
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4 CASE STUDY – “THE WATT FIELD” 

The Watt Field case study (also known as IPE‐1 field) was developed by the Uncertainty Quantification 

Group of the Heriot–Watt University. It is a semi–synthetic case study, based on the incorporation of 

synthetic and real data from a North Sea oil field. According to the authors, The Watt Field case is 

primarily used to describe a realistic field example seen through appraisal into the early development 

life stage (Arnold D. , et al., 2013). 

Traditional, Oil and Gas case studies (synthetic or real) are developed in order to test reservoir behavior 

by exploring the uncertainty on a particular set of features. Numerous case studies are used for 

addressing issues regarding property upscaling and distribution, uncertainty prediction, production 

optimization and history matching, among others. Nevertheless, few of the available reservoir 

benchmarks are designed primarily as a platform for the study of these issues in a multi–level and 

hierarchical approach.  

In addition to the ever present direct and indirect measurement errors, lack of data and poor judgements 

based on a lack of domain knowledge or any of the factors previously pointed out, uncertainty is also 

generated and propagated throughout all of the reservoir modelling workflow. Interpretational choices 

and the choice of techniques used to model a given aspect of the reservoir, have an effect on the final 

outcome and quality of the reservoir description. 

The goal behind the development of the Watt Field case study was primarily to address interpretational 

uncertainty, integrated throughout the reservoir modelling workflow. The interpretational choices 

considered were the following (Arnold D. , 2012): 

• Top structure seismic interpretation – seismic interpretation of the top structure defines the 

enclosure size and can be ambiguous from the data and the depth conversion; 

• Fault network definition – fault location, dimensions and the connectivity of the network defines 

the partitioning of the reservoir; 

• Grid resolution – pay off between number of iterations and resolution of the model to capture 

the reservoir features adequately; 

• Facies modelling approach – choice of algorithm to populate model with properties; 

• Facies interpretations – facies estimation from well logs through cut–offs; 

• Petrophysical property prediction from the available well data – how to predict permeability 

and porosity across the reservoir; 

• Relative permeability data. 

By including the possibility to consider different interpretational choices concerning reservoir geology, 

and the possibility of perturbing features and properties that are not included in traditional history 

matching purposed benchmarks, there is an opportunity to explore a multitude of geological scenarios 

and to subsequently address uncertainty quantification over the combination of these parameters on the 

production of the reservoir. Figure 23 shows the different possible interpretational choices for the Watt 

Field case study. 
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Figure 23 – Possible interpretational choices for the Watt Field case study (Arnold D. , 2012). 

4.1 Watt field description 

As previously mentioned, the Watt Field case study was developed with the primary intent of addressing 

interpretational uncertainty integrated throughout the reservoir modelling workflow. For this effect, the 

benchmark provides a number of different model realizations, which are intended to represent typical 

uncertainties and interpretational choices encountered in a reservoir geomodelling workflow. 

The reservoir has a 12.5×2.5�"2 surface area (East–West direction), with a thickness of approximately 

190 m, much of which is below the OWC.  

Initial depth of the reservoir is located around 1555" subsurface with an initial reservoir pressure around 

the order of 2500�WX as measured from repeat formation tests and well test data. The OWC was identified 

from wireline and RFT data at a constant 1635" subsurface. 

Figure 24 shows the OWC level in the Watt Field case study. Different interpretational choices regarding 

Top Structure geometry, from seismic, are also illustrated (Yellow – TS1, Red – TS2, Blue – TS3). 
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Figure 24 – Top-view of the OWC level and Top Structures for the Watt Field (Arnold, 2012). 

The depositional environment for the field is considered to be a braided river system, with common 

facies types including fluvial channel sands, overbank fine sands, and background shales (Figure 25).  

 

Figure 25 – Facies interpretations for the Watt Field (Arnold D. , 2012). 

Initial appraisal of the field was made through a set of 6 wells (Wells A–F). Porosity and permeability 

data is available for Wells A and C, while core and neutron density porosity data is provided for all 

appraisal wells (Figure 26). Coarse and fine sand facies have each a set of three relative permeabilities 

being provided, with the intent of reproducing uncertainty in the choice of the true representative 

relative permeability behavior. 
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Figure 26 – Well correlation panel of Wells A–F, showing the top structure well pics for TS–1, 

TS–2 and TS–3 (Arnold D. , 2012). 

An interpretation of the top structure and major faults was picked from the seismic in the time domain 

and then depth converted. The consideration of uncertainty in this process resulted in the arriving of 

three possible top structure geometries, with three possible structural models, resulting in a combination 

of nine resulting top surface compositions (Figure 27). 

In addition, three different model grid resolutions were provided (coarse, intermediate and fine), along 

with three different facies interpretations. This results in a total of 81 possible simulation models to 

choose from.  
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Fault Model 1 

 

Fault Model 2 

 

Fault Model 3 

 

Figure 27 – Fault network definition for the Watt Field, adapted from Arnold (2012). 

The reservoir is produced by means of 16 horizontal production wells located across the central parts of 

the reservoir. An additional 5 horizontal and 2 vertical injectors are developed around the edges of the 

reservoir to assist in production by providing pressure support. Horizontal multi‐lateral wells were 

adopted to address the low relief of target zones and to maximize distance from the OWC, in order to 

maximize Oil production rates, while minimizing Water cuts. Table 7 and Table 8 provide a list of the 

operation parameters for all producer and injector wells: 
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Table 7 – Operation parameters for all producer wells of the Watt Field. 

Well 

Name 

Producer 

Type 

Start of 

Production 

Control 

Mode 

Flow Rate 

(stb/day) 

BHP target 

(psia) 

WELL1 OIL, GAS 01/01/2011 Liquid Rate 8000 1000 

WELL1A OIL, GAS 01/01/2011 Liquid Rate 8000 1000 

WELL1B OIL, GAS 01/01/2011 Liquid Rate 8000 1000 

WELL2 OIL, GAS 07/11/2011 Liquid Rate 6500 1000 

WELL2A OIL, GAS 07/11/2011 Liquid Rate 6500 1000 

WELL3 OIL, GAS 05/06/2011 Liquid Rate 8000 1000 

WELL3A OIL, GAS 05/06/2011 Liquid Rate 8000 1000 

WELL4 OIL, GAS 01/01/2011 Liquid Rate 8000 1000 

WELL4A OIL, GAS 01/01/2011 Liquid Rate 8000 1000 

WELL5 OIL, GAS 10/03/2012 Liquid Rate 8000 1000 

WELL5A OIL, GAS 10/03/2012 Liquid Rate 8000 1000 

WELL6 OIL, GAS 01/01/2011 Liquid Rate 8000 1000 

WELL7 OIL, GAS 11/06/2012 Liquid Rate 8000 1000 

WELL8 OIL, GAS 05/06/2011 Liquid Rate 8000 1000 

WELL9 OIL, GAS 01/01/2011 Liquid Rate 6500 1000 

WELL10 OIL, GAS 12/09/2012 Liquid Rate 7000 1000 

 

Table 8 – Operation parameters for all injector wells of the Watt Field. 

Well 

Name 

Injector 

Type 

Control 

Mode 

Flow Rate 

(stb/day) 

BHP 

target 

(psia) 

Flow Rate 

(stb/day) 

BHP 

target 

(psia) 

INJ1 WATER Flow Rate 12500 3500 19000 3500 

INJ2 WATER Flow Rate 15000 3500 19000 3500 

INJ3 WATER Flow Rate 15000 3500 19000 3500 

INJ4 WATER Flow Rate 15000 3500 19000 3500 

INJ5 WATER Flow Rate 15000 3500 19000 3500 

INJ6 WATER Flow Rate 15000 3500 19000 3500 

B WATER Flow Rate 10000 3500 11000 3500 

This configuration of well profiles and production schedules results in a simulation model that is 

representative of the production complexities seen in a real oil field development planning. 

Production data for the reservoir was generated, based on a truth case scenario, for a period of 2903 

days (8 years) and for all wells. 
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Oil, Water and Gas rates and bottom-hole pressure (BHP) data are provided and a Gaussian noise of 

15% of the value was added to the data. Figure 28 exemplifies the production history for FIELD vectors 

(FOPR, FWPR and FGPR) and for WBHP for Well1. 

  

  

Figure 28 – Production history for FOPR, FWPR, FGPR and WBHP Well1. 

4.2 Base scenario selection 

As previously described, the Watt Field benchmark offers a choice of 81 possible scenarios with different 

interpretational choices, ready for dynamic simulation. For the purpose of this work, there was a need 

to choose a single base scenario in order to test the proposed history matching algorithm. Due to time 

and computational constraints, the selection was made according to the purpose of the work and 

regarding several aspects of its concept. Integration of geologic consistency in the history matching 

workflow was one of the purposed objectives of the project. This geologic consistency, in the form of 

30000

50000

70000

90000

110000

130000

150000

3
1

2
1
7

4
0
3

5
8
9

7
7
3

9
5
3

1
1
3
3

1
3
1
3

1
4
9
3

1
6
7
3

1
8
5
3

2
0
3
3

2
2
1
3

2
3
9
3

2
5
7
3

2
7
5
3

F
O
P
R
 (
st
b
/
d
a
y
)

Timestep (days)

FOPR (History)

0

5000

10000

15000

20000

25000

30000

35000

3
1

2
1
7

4
0
3

5
8
9

7
7
3

9
5
3

1
1
3
3

1
3
1
3

1
4
9
3

1
6
7
3

1
8
5
3

2
0
3
3

2
2
1
3

2
3
9
3

2
5
7
3

2
7
5
3

F
W

P
R
 (
st
b
/
d
a
y
)

Timestep (days)

FWPR (History)

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

3
1

2
1
7

4
0
3

5
8
9

7
7
3

9
5
3

1
1
3
3

1
3
1
3

1
4
9
3

1
6
7
3

1
8
5
3

2
0
3
3

2
2
1
3

2
3
9
3

2
5
7
3

2
7
5
3

F
G
P
R
 (
M

sc
f/

d
a
y
)

Timestep (days)

FGPR (History)

0

500

1000

1500

2000

2500

3
1

2
1
7

4
0
3

5
8
9

7
7
3

9
5
3

1
1
3
3

1
3
1
3

1
4
9
3

1
6
7
3

1
8
5
3

2
0
3
3

2
2
1
3

2
3
9
3

2
5
7
3

2
7
5
3

W
B
H
P
 (
p
si
a
)

Timestep (days)

WBHP WELL1 (History)



- 46 - 

geologic consistent regionalization for geostatistical conditional assimilation of properties, is addressed 

primarily by considering a form of integrating fault presence in the adopted regionalization patterns. 

Perturbation of fault transmissibilities is also a concern, so, parsimonious fault quantity in the selected 

fault model, should be an issue. As such, by looking at the available fault models for the Watt Field, as 

shown in the previous chapter, Fault Model 2 was selected, due to it offering a good balance between 

number of available faults and number of fault transmissibility parameters to be perturbed.  

Over the course of the work, the overall observation regarding the multitude of base scenario responses 

allowed to conclude that relative permeabilities for coarse sand type (CO1, CO2 and CO3) often replicate 

observed data better than fine sand relative permeabilities. The same was observed regarding the top 

structure selection, with Top Structure 1 being the type of interpretation more prone to better observed 

data reproduction. 

As such a set of test runs was made for the remaining interpretational choices for the benchmark in 

order to decide the property cut–offs and their respective modeling approach. Figure 29 summarizes the 

results obtained for the set of runs. Quality of the runs was represented by discretizing the relative 

misfits by FIELD and well groups, over the remaining combination of interpretation uncertainties. 

 

Figure 29 – Result comparison of Relative Misfit vs Well group, over selected scenarios. 

From the obtained results, the choice for the base scenario fell on the CO1 OBJECT model. Although 

other scenarios offer lower misfit values regarding field productions, the total of misfits given by the 

CO1 OBJECT is much lower than the other available choices. The criteria behind this selection was to 

select a model with good assumptions regarding local matches (well group matches), but with a high 

enough global mismatch for better observing the effect of the proposed history matching algorithm. 

FIELD
GROUP

1
GROUP

2
GROUP

3
GROUP

4
GROUP

5
GROUP

6
GROUP

7
GROUP

8
GROUP

9
GROUP

10
TOTAL

Misfit CO3 PIXEL 123 325136 1469 1057 77399 1925 384 391 1062 1829 1020 411795

Misfit CO3 OBJECT 1027 1167547 3558 977 61409 1137 3017 179 167 1168 202 1240387

Misfit CO2 PIXEL 334 42297 1378 3960 358666 70 751 1241 480 313 1104 410594

Misfit CO2 OBJECT 3270 1194397 1360 10526 451641 1256 35593 498 681 2018 6595 1707836

Misfit CO1 PIXEL 207 369431 1359 1299 2328 650 361 259 1061 503 289 377748

Misfit CO1 OBJECT 388 827 27503 188 1740 242 362 198 165 4311 18024 53948

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Relative Misfit vs Well Group
for Fault Model 2, Cuttofs and Model Approaches



 

- 47 - 

Figure 30 shows a 3D view of the porosity field for the selected base scenario, along with its respective 

histogram: 

  

Figure 30 – Porosity field for the selected base scenario (left), Histogram for porosity (right). 

Table 9 summarizes the property statistics of the model, for the variable of porosity: 

Table 9 – Model statistics for porosity. 

Property Porosity 

Min: 0 

Max: 0.27 

Mean: 0.1619 

Std. dev. 0.0464 

Variance: 0.0022 

Figure 31 shows a 3D view of the permeability field for the selected base scenario, along with its 

respective histogram for �V¸10(�): 

  

Figure 31 – Permeability field for the selected base scenario (left), Histogram for permeability 

of ÇÈÉÊË(Ì) (right). 
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Table 10 summarizes the property statistics of the model, for the variable of porosity: 

Table 10 – Model statistics for permeability. 

Property Permeability 

Min: 0 

Max: 9442 

Mean: 537.5942 

Std. dev. 1417.934 

Variance: 2010535 

Variance: 2010535 

Figure 32 shows the saturation regions concerning the respective facies modeling approach for the 

selected base scenario: 

 

Figure 32 – Saturation regions for the selected base scenario. 
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5 RESULTS AND DISCUSSION 

This section introduces the results obtained by applying the methodology described in Chapter 3 and 

applied to the case study introduced in Chapter 4.2. 

5.1 Geostatistical history matching 

The first stage concerns only the conventional GHM with a regionalization model. This section compares 

the misfit values obtained for the different proposed regionalization methods. This part of the work 

consists on the inner loop of the second stage of the work. 

For this stage, a total of 10 iterations, with 10 simulations each (resulting in a total of 100 realizations) 

is performed for every zonation method. The best–fit porosity and permeability are shown here. Plots 

for minimum misfit per iteration, standard deviation of misfit value per iteration, best minimum misfit 

along all iterations and average misfit per iteration are presented as a form of illustration of match 

quality and convergence obtained. 

5.1.1.1 Global zonation 

Figure 33 and Figure 34 illustrate the best–fit models of porosity and permeability obtained from the 

application of the GHM algorithm with Global zonation. 

 

Figure 33 – Best–fit Porosity for Global zonation method. 
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Figure 34 – Best–fit Permeability for Global zonation method. 

Results, in terms of field values, for the Global zonation GHM run are show in Figure 35. 

  

  

Figure 35 – Global Zonation – Minimum Misfit per Iteration (top left), Standard Deviation per 

Iteration (top right), Global Minimum Misfit per Iteration (bottom left) and Average Misfit per 

Iteration (bottom right). 
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The general pattern for the run can be characterized by a considerable drop in the results from iteration 

1 to iteration 2. After this drop a slow and steady progress of the values is observed until the end of the 

run. This can be explain simply by looking at the standard deviation per iteration plot, which illustrates 

how the runs start showing little variation after only iteration 3. Such a quick drop in standard deviation 

values can be explained by the type of correlation coefficient used for the global zonation method, which 

is a global correlation coefficient, being calculated by the FIELD vectors of FOPR and FWPR. 

Convergence of the run is obtained at iteration 6 with a global minimum misfit of 57 for the run. 

5.1.1.2 Square zonation 

Figure 36 and Figure 37, illustrate the best–fit models of porosity and permeability for the GHM 

algorithm with Square zonation. 

 

Figure 36 – Best–fit Porosity for Square zonation method. 

 

Figure 37 – Best–fit Permeability for Square zonation method. 

The results, in terms of field values, for the squared zonation GHM run are show in Figure 38. Squared 

zonation shows an overall poor match. Although it is possible to observe a convergence occurring in 

terms of global misfit value, the minimum misfit value is very high (120), which given the 96 timesteps 

of the fluid flow simulation, means that in average, the deviation between observed and simulated data 
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is outside the admissible error. Also, there is significant variability in terms of minimum misfit per 

iteration, standard deviation and average misfit, which means that the history matching algorithm 

cannot stabilize and progress towards a minimum value. This shows the inability of the adopted 

regionalization pattern in replicating the characteristics of geological consistency required for reliable 

reservoir modeling and characterization. 

  

  

Figure 38 – Square Zonation – Minimum Misfit per Iteration (top left), Standard Deviation per 

Iteration (top right), Global Minimum Misfit per Iteration (bottom left) and Average Misfit per 

Iteration (bottom right). 
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5.1.1.3 Circular zonation 

Figure 39 and Figure 40 illustrate the best–fit models of porosity and permeability obtained from the 

application of the GHM algorithm with circular zonation. 

 

Figure 39 – Best–fit Porosity for Circular zonation method. 

 

Figure 40 – Best–fit Permeability for Circular zonation method. 

The results, in terms of field values, for the circular zonation GHM run are show in Figure 41. 

With this regionalization model the results obtained show a good match achieving a global minimum at 

iteration 3. However, this result occurs very early in the run, with the next iterations having higher 

variability in terms of minimum misfit value. This could probably mean that the misfit value of 61, 

obtained at iteration 3, could be a product of chance. Also, the fact that after iteration 3 consequent 

runs rarely return to misfit values close to 61 could mean that the conditionally assimilated geostatistical 

changes that occurred on the petrophysical models, were not significant enough to be reproduced as 

better matches in the dynamic simulation. Standard deviation per iteration shows a strong decrease 

along the course of the run, with the same pattern being observed on the average misfit per iteration.  
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These results show that well radius of influence could be an important aspect to be considered in a 

zonation–based methodology. However, the high variability observed in the minimum misfits per 

iteration could mean that this simple regionalization model is not enough to fully characterize flow 

patterns and aggregate different zones of the reservoir. 

  

  

Figure 41 – Circular Zonation – Minimum Misfit per Iteration (top left), Standard Deviation 

per Iteration (top right), Global Minimum Misfit per Iteration (bottom left) and Average Misfit 

per Iteration (bottom right). 
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5.1.1.4 Voronoi zonation 

Figure 42 and Figure 43 illustrate the best–fit models of porosity and permeability obtained from the 

GHM algorithm with Voronoi zonation. 

 

Figure 42 – Best–fit Porosity for Voronoi zonation method. 

 

Figure 43 – Best–fit Permeability for Voronoi zonation method. 

The results, in terms of field values, for the Voronoi zonation GHM run are show in Figure 44. 

The Voronoi zonation method, shows a good match profile, with minimum misfits per iteration being 

observed with low variability for the course of the run. In terms of minimum misfits per iteration and 

average misfit per iteration, an abrupt decrease is observed after iteration 1, with the run progressing 

steadily for the following iterations in a smooth trend towards smaller misfit values. The minimum misfit 

value occurred at iteration 6, with consequent results in terms of all presented metrics, showing a 

stabilization of the results. 

These results show that the Voronoi regionalization approach is capable of replicating some of the 

characteristics necessary to discretize the reservoir model in terms of petrophysical variables and fluid 

flow patterns. However, high variability of the misfit standard deviation in the first 6 iterations means 
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that changes occurring from iteration to iteration reproduce a wide range of results, implying that 

additional aspects in terms of a zonation–based methodology should be taken into consideration 

  

  

Figure 44 – Voronoi Zonation – Minimum Misfit per Iteration (top left), Standard Deviation 

per Iteration (top right), Global Minimum Misfit per Iteration (bottom left) and Average Misfit 

per Iteration (bottom right). 
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5.1.1.5 Fault and Streamline zonation 

Figure 45 and Figure 46 illustrate the best–fit models of porosity and permeability obtained from the 

GHM algorithm with Fault and Streamline zonation. 

 

Figure 45 – Best–fit Porosity for Fault and Streamline zonation method. 

 

Figure 46 –Best–fit Permeability for Fault and Streamline zonation method. 

The final zonation–based methodology being tested is the Fault and Streamline zonation methodology. 

The assumptions and details behind this approach are fully explored in Chapter 3 and can be summarized 

as an attempt to fully integrate various concepts related to geological consistency: well area of influence, 

fault zonation, production streamline volumetric and overlapping and enveloping of production areas 

along depth. This is an attempt to arrive at a more efficient reservoir discretization to be used by 

geostatistical history match through soft conditioning, which will serve as the inner core to the Adaptive 

Stochastic Sampling algorithm to be used. 

The results, in terms of field values, for the Fault and Streamline zonation GHM run are show in Figure 

47. 
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Fault and Streamline zonation resulted in a good match of the observed reservoir production data. The 

minimum misfit value was achieved at iteration 6, with a value of 56. The minimum misfit per iteration 

and misfit standard deviation show a global downward trend through the course of the run, meaning 

that the geostatistical assimilation of properties through soft–data conditioning results in progressively 

lower misfit values being obtained over the course of the run. 

These results enhance the idea behind the assumptions made for this zonation approach, which integrates 

different aspects of both petrophysical and dynamic nature. An aspect of geologic consistency is kept 

considering fault presence and applying a fault based zonation, while attempting to characterize fluid 

flow consistency by considering production streamlines. The results showed an overall better performance 

of the fault and streamline zonation methodology that can be obtained. 

  

  

Figure 47 – Fault and Streamline Zonation – Minimum Misfit per Iteration (top left), Standard 

Deviation per Iteration (top right), Global Minimum Misfit per Iteration (bottom left) and 

Average Misfit per Iteration (bottom right). 
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Figure 48 shows the comparison of results between the different adopted zonation methods. 

  

  

Figure 48 – Comparison between different zonation methods – Minimum Misfit per Iteration 

(top left), Standard Deviation per Iteration (top right), Global Minimum Misfit per Iteration 

(bottom left) and Average Misfit per Iteration (bottom right). 

A a brief summary table with the key comparison indicators is presented in Table 11. 

Table 11 – Summary table of comparison between zonations. 
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Global 57 6 Good 3 Good 3 Good 

Square 120 2 Bad 
No 
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No 

convergence 
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In order to provide a wider analisys over the behaviour of the different zonation methods, Figure 49 

shows the misfit evolution per iteration. It is possible to observe the full misfit convergence of the 

different methods and the overal better performance of the Fault and Streamline zonation methodology.  

 

Figure 49 – Misfit evolution comparison between all zonation methods. 
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WELL9. Zone 7 presented the same misfit value for both methods, although porosity averages are not 

equally distributed between both methods. This can be explained by the proximity of WELL7 to the 

two injectors adjacent to this zone, and the delimiting of this zone by a sealing fault, to the south. The 

pressure support given by the injectors and the confining of the well by the fault presence, could be 

outweighing the importance the perturbation of properties in this area, thus resulting in equally good 

matches. 

Fault and Streamline zones 

 Fault and  

Streamline 
Circular 

Field 56 61 

Group 1 850 793 

Group 2 32346 175793 

Group 3 571 2282 

Group 4 1883 1896 

Group 5 283 46 

Well 6 1988 769 

Well 7 61 61 

Well 8 662 381 

Well 9 284 271 

Well 10 297 344 

Total 39280 182696 
 

 

Best average Porosity (Fault and Streamline) 

Best average Porosity (Circular) 

Figure 50 – Comparison of Best average Porosity between fault and streamline and circular 

zonation. (left) Total misfit values per well group and field (right). 

5.2 Coupling with Adaptive Stochastic Sampling 

5.2.1 Production match analysis 

As the outcome of the comparison between different zonation methods made on Chapter 5.1, fault and 

streamline based zonation was selected to be integrated on the GHM loop, for coupling with Adaptive 

Stochastic Sampling. The inner zonation–based history matching loop was set to run 5 simulations at 

every iteration. For the Adaptive Stochastic Sampling outer loop, PSO was selected to optimize the 
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perturbed parameters over a total of 223 iterations. A total of 1115 fluid flow simulations were, therefore, 

ran. 

A total of 17 parameters were perturbed, with 4 variogram parameters for porosity and permeability 

(horizontal and vertical ranges of both properties), 6 histogram parameters (facies means and proportions 

of both properties) and 7 fault transmissibilities (for faults 2, 3, 5, 6, 7, 8 and 9). Table 12 shows a 

summary of all the selected prior distributions used for the selected parameters to match (see Chapter 

3.3.1 for more details). 

Table 12 – Selection of prior distribution ranges. 

Property Parameter Variable Name Distribution Type Prior Range 

Fault Transm. All Fault Transm. 
$ftrans 

(2,3,5,6,7,8,9) 
Uniform [0.0, 1.0] 

Permeability 

Horizontal. Range $permrange1 Discrete Uniform [40, 80] 

Vertical. Range $permrange2 Discrete Uniform [10, 30] 

Facies 2 

Proportion 
$perm_fac_2 Uniform [0.7, 1.0] 

Facies 1 Mean $perm_mean_1 Uniform [–1.5, 1.5] 

Facies 2 Mean $perm_mean_2 Uniform [1.5, 3.0] 

Porosity 

Horizontal. Range $pororange1 Discrete Uniform [40, 80] 

Vertical. Range $pororange2 Discrete Uniform [10, 30] 

Facies 2 

Proportion 
$poro_fac_2 Uniform [0.0, 0.3] 

Facies 1 Mean $poro_mean_1 Uniform [0.15, 0.19] 

Facies 2 Mean $poro_mean_2 Uniform [0.19, 0.23] 

Figure 51 shows the overall misfit progress of the run, highlighting the 5 best iterations of the run, along 

with their misfits. As a way of visualizing the match improvement obtained from the implementation of 

the algorithm, the misfit calculated for the base scenario dynamic evaluation is also shown.  

From the observation of the misfit evolutions for FIELD data (Figure 51), it is possible to interpret that 

convergence occurred at around iteration 100, when 4 of the 5 lowest misfits were obtained. The lowest 

misfit belongs to iteration 91, with a value of 32.01. Notice the significant improvement not only in 

comparison with the base scenario misfit value (388), but also in comparison with the lowest misfit 

observed (56), for the testing of the fault–streamline methodology made on Chapter 5.1.1.5 
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Figure 51 – Misfit Evolution of the zonation–based GHM algorithm, coupled with Adaptive 

Stochastic Sampling. 

Figure 52 shows the fluid flow response for the best 5 iterations of the run in terms of FIELD values. 

   

Figure 52 – Fluid flow response for FOPR (left), FWPR (middle) and FGPR (right) for GHM 

coupled with Adaptive Stochastic Sampling. 
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Figure 53 is an overview of the misfit evolutions obtained for every zone of the reservoir.  

 

 

 

 

  

  

  

  

Figure 53 – Misfit evolution over different zones (x axis – Iteration, y-axis – Misfit). 
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By looking at Figure 53, an overview of the misfit evolutions obtained for every zone of the reservoir is 

obtained. Its interpretation shows that zones 5, 7 and 8 have a noticeable convergence pattern along the 

iterations. On the other hand, some zones show erratic or even divergent behavior. This can be explained 

by taking into account the fact that some zones have more than one well associated and also the fact 

that there is excessive water production occurring in the reservoir. Not only can water production shift 

from one well to another within the same well group, but it also can shift from one well group, or zone, 

to another, depending on changes being made to the model by the history matching algorithm. 

In fact, by looking at the misfit values for Zone 2, 5 and 7 (Figure 53), it is possible to observe that 

misfit values start dropping at around iteration 30. Such an abrupt change can only be attributed to 

petrophysical changes occurring in the model due to the GHM inner loop. The consequence was the 

shifting of water production to a different zone. In fact, the spikes interpreted for Zone 3 between 

iterations 30 to 50, correspond to the shift in water production to this zone. When misfit values for Zone 

3 decrease at around iteration 50, a sudden increase in misfit is observed in Zone 6. In short, the described 

pattern of misfit evolution illustrates the shifting of water production, occurring in early iterations, from 

Zone 2, 5 and 7 to Zone 3 and then to Zone 6, with the final pattern of having zone 6 produce the 

excessive water in the reservoir being considered as preferential in terms of achieving lower global misfit 

values throughout the remainder of the run. 

Figure 53 also allows interpreting that some of the zones do not show a pattern of convergence, meaning 

that conditional assimilation of properties and the adopted parameter perturbation from Adaptive 

Stochastic Sampling is missing something to allow the match on these zones. Zones like zone 1, 4 and 

10 show no convergence, regardless of the perturbation. This can be explained by taking into account 

the fact that zone 1 is composed of a group of 3 wells (WELL1,1A and 1B) and zone 4 is composed of 2 

wells (WELL 4 and 4A) with two additional wells to the north and south (WELL9 and WELL6). The 

observed non convergent patterns for these two zones are explained by the compensation of the 

mentioned wells composing the groups, in terms of production. For zone 10, the reason for the non-

convergence is due to the fact that this zone is entrapped by the production area for zone 2. Zone 2 is 

characterized by excessive production of water, having the highest misfits of the whole reservoir. Because 

of this, Zone 10 is affected in its mismatch convergence. 

Nevertheless, regardless of the poor misfit values and convergence for some of the zones, global misfit 

values for FIELD data show that these zones were not representative enough in terms of production 

when compared to the global production of the reservoir. In fact, by looking at the five best production 

responses (Figure 52), it is possible to observe that, more than matching FIELD production for the 

reservoir, they are practically identical not only in shape but also in terms of misfit value. By considering 

the scope of 223 iterations, and considering that the 5 best matches found occurred approximately in 

the first half of the run (5th best was at iteration 122), and that they show identical response behavior, 

it is safe to assume that the model was exhausted in terms of further improving matches with the type 

of perturbation applied. 
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Figure 54 shows an example of the matches obtained for the 5 best iterations of the run, in terms of Oil 

and Water Production rates for WELL5 and WELL7. This figure shows the quality of the matches with 

production curves for the 5 best iterations, presenting a very close profile, with flow rates being matched 

throughout the total production time. See Appendix A for other production curves. 

  

  

Figure 54 – Oil and Water production for WELL5 (top left, top right) and WELL7 (bottom left, 

bottom right) for the 5 best iterations. 
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For match quality illustration, a comparison is made between misfits obtained from the base scenario 

selected and the best iteration from the coupling algorithm on Figure 55. As previously observed, by 

looking at Figure 51, for FIELD values (FOPR, FWPR and FGPR), the base scenario returned a 

cumulative misfit of 388, while the best coupling iteration (iteration 91, simulation 5) achieved a misfit 

of 32. 

For individual well matches, Figure 55 displays the sum of misfits for WOPR, WWPR and WBHP of 

each individual well. The picture shows the variation of misfits along the different areas of the reservoir, 

by plotting the summation of all well misfits in the same zone. This way, there is the possibility to see 

which zones matched better, compared to others and were the problematic zones are located.  

        

 

        

Figure 55 – Comparison of match quality by well between Base Scenario (Orange) and GHM 

coupling (Green), (y axis – Sum of misfits for WOPR, WWPR AND WBHP). 

Figure 55 makes it possible to visualize the improvements made on the production matches of specific 
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and 10), while the remaining wells showed worse matches. Nevertheless, the cumulative improvement of 

several wells was reproduced by a tenfold reduction of FIELD matches (388 misfit value from base 

scenario to 32 misfit value from GHM coupled with Adaptive Stochastic Sampling). 
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Well groups 1 and 2, are cases where one well in a group achieves a higher misfit, but is compensated 

by the other wells in the same group, in terms of production mismatch. Well group 3 and 6 show an 

increase in misfit due to excessive water production (see analysis made on misfit evolution over different 

zones: Figure 53). Nevertheless, higher misfits for WELL3 and WELL6 weren’t reproduced on higher 

global misfits. 

5.2.2 Parameter perturbation analysis 

For the particular case of fault transmissibilities, Figure 56 presents the parameter value vs iteration 

pattern being observed during the course of the run. 

$ftrans2 $ftrans3 $ftrans5 

   

 

$ftrans6 

 

$ftrans7 $ftrans8 $ftrans9 

   

Figure 56 – Fault transmissibility parameter value (y axis) vs Iteration (x axis). 
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previous iterations, in terms of dynamic response. This may sometimes force the PSO sampling algorithm 

to search the parameter space for a combination of parameter values that will go into a different direction 

from what was previously being observed. This could also mean that for some of the faults, their 

transmissibilities are not significant enough in terms of their influence regarding dynamic response of 

the model. 

Figure 57 shows the Parameter vs Misfit plots for the perturbation of fault transmissibilities. It shows a 

big dispersion of values along the lower values of misfit. As previously explained, this is a result from 

the type of search of the parameter space that occurred during the run. However, it is possible to 

interpret some of the concentrations of most frequent parameter values for lower misfit iterations, namely 

on faults 3, 5, 6, with remaining fault transmissibility values being too sparse to assign a specific interval 

with a degree of confidence. 

$ftrans2 $ftrans3 $ftrans5 

   

 

$ftrans6 

 

$ftrans7 $ftrans8 $ftrans9 

   

Figure 57 – Fault transmissibility parameter value (y axis) vs Misfit (x axis). 

In what variogram parameter perturbation is concerned Figure 58 shows the values obtained for 

horizontal and vertical Permeability ranges vs Iteration. 
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$permrange1 $permrange2 

  

Figure 58 – Permeability range vs Iteration (left – Horizontal range, right – Vertical range). 

By looking at Figure 58 , it is possible to observe a tendency for lower values of horizontal ranges 

($permrange1) being adopted. In terms of vertical ranges ($permrange2), towards the final half of the 

iterations, a tendency for central values regarding the adopted distribution is being more recurrent.  

Figure 59 shows the concentration of parameter values for horizontal and vertical permeability ranges 

over the course of the iterations. A concentration of lower values for horizontal permeability ranges 

($permrange1) is observed, while for vertical ranges, the spread of parameter values corresponding to 

lower misfits is much higher. This could mean that vertical ranges for the property of permeability are 

not important enough in terms of dynamic response for the sampling algorithm to detect. In other words, 

regardless of the adopted range for vertical permeability within the assumed parameter value 

uncertainty, dynamic simulation is not sufficiently affected. Another explanations could lie in the 

definition of the distribution intervals, which could eventually favor better matched responses and thus, 

higher concentration of parameter values, for higher than assumed ranges of vertical permeability. 
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Figure 59 – Permeability range vs Misfit (left – Horizontal range, right – Vertical range). 
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Figure 60 shows a top view of the Permeability field for the best simulation (Iteration 91, simulation 5). 

 

Figure 60 – Top view of the best-fit Permeability realization (Iteration 91, Simulation 5). 

Regarding histogram perturbation for permeability, Figure 61 shows the results obtained for histogram 

perturbation vs Iteration. A tendency for sampling the higher values for facies 2 proportions 

($perm_fac_2), can be observed, which is the facies associated with the highest permeability values 

(Chapter 3.3.1.2). Regarding means for both facies, it is possible to observe that the tendency is not 

clear for facies 1, with the same wavy–like sampling pattern being observed as previously shown regarding 

fault transmissibilities. For facies 2, convergence is observed towards a range of values located at the 

mid to top range of the perturbation distribution interval. 
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Figure 61 – Permeability Histogram perturbation (y axis – parameter value) vs Iteration (x 

axis), (left – Facies 2 Proportion, middle – Facies 1 Mean, right – Facies 2 Mean). 

Figure 62 shows the concentration of parameter values obtained for histogram perturbation, over the 

course of the iterations. There is a concentration of values for the proportion of Permeability Facies 2 

occurring at higher values. Permeability means for Facies 1 does not display an identifiable pattern, 

meaning that probably the perturbation for this parameter does not have an effect that is relevant 

enough on dynamic response, for the sampling algorithm to detect. As for permeability means for facies 

2, the same a concentration of parameter values, at the top half part of the parameter distribution 

interval, is observed. 
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$perm_fac_2 $perm_mean_1 $perm_mean_2 

   

Figure 62 – Permeability Histogram perturbation (y axis – parameter value) vs Misfit (x axis), 

(left – Facies 2 Proportion, middle – Facies 1 Mean, right – Facies 2 Mean). 

Figure 63 is a comparison between the base scenario log10(k) histogram and the histograms resulting 

from the best realization (iteration 91, simulation 5). 
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Figure 63 – Comparison between Permeability histogram for Base Scenario and Best Iteration. 

For variogram parameter perturbation of porosity, Figure 64 shows the values obtained for horizontal 

and vertical Porosity ranges vs Iteration. A trend for lower values of horizontal ranges ($pororange1) 

can be observed. In terms of vertical ranges ($pororange2), it is possible to observe a trend for higher 

values of vertical ranges. 
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Figure 64 – Porosity range vs Iteration (left – Horizontal range, right – Vertical range). 

Figure 65 shows the concentration of parameter values for horizontal and vertical porosity ranges over 

the course of the iterations. A concentration of lower values for horizontal porosity ranges ($pororange1) 

can be observed, while for vertical ranges, the concentration tends towards higher values of the adopted 

perturbation distribution. 
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Figure 65 – Porosity range vs Misfit (left – Horizontal range, right – Vertical range). 

Figure 66 shows a top view of the Permeability field for the best simulation (iteration 91, simulation 5). 

 

Figure 66 – Top view of the best-fit Porosity realization (Iteration 91, Simulation 5). 
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Regarding histogram perturbation for porosity, Figure 67 shows the results obtained for histogram 

perturbation vs Iteration. Values for facies 2 proportions ($poro_fac_2) tend to be sampled in the mid 

region of the adopted distribution interval, towards later iterations. As for facies distribution means, it 

is possible to observe the same wavy–like observed in other cases of parameter perturbation pattern of 

searching in the parameter space, with an apex at around iteration 50. Nevertheless, for both facies, 

sampling seems to be preferring higher values for perturbation, although for Facies 2, the mean seems 

to converge with more accuracy towards a value of 0.22±0.5. 

$poro_fac_2 $poro_mean_1 $poro_mean_2 

   

Figure 67 – Porosity Histogram perturbation (y axis – parameter value) vs Iteration (x axis), 

(left – Facies 2 Proportion, middle – Facies 1 Mean, right – Facies 2 Mean). 

Figure 68 shows the concentration of parameter values obtained for histogram perturbation, over the 

course of the iterations. There is a concentration of values for Porosity Facies 2 proportions occurring 

at the mid–region of the perturbation distribution interval. Porosity means for Facies 1 does not display 

an identifiable pattern, while Porosity means for facies 2, shows a concentration of parameter values at 

the top half part of the interval, for values between 0.21 and 0.22. 
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Figure 68 – Porosity Histogram perturbation (y axis – parameter value) vs Misfit (x axis) (left – 

Facies 2 Proportion, middle – Facies 1 Mean, right – Facies 2 Mean). 
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Figure 69 is a comparison between the base scenario porosity histogram and the histograms resulting 

from the best realization (iteration 91, simulation 5). 

Base Scenario histogram �	� Best Iteration histogram �	� 

  

Figure 69 – Comparison between Porosity histogram for Base Scenario and Best Iteration. 
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6 CONCLUSIONS AND FUTURE WORK 

The motivation behind the work presented in this thesis was to contribute with an integrated workflow 

regarding geostatistical history matching. The purpose of this work was the development of an algorithm 

that was able to couple GHM with Adaptive Stochastic Sampling, addressing the local match of 

production data, under a zonation-based methodology. Another contribution of this work was to provide 

a comparison between several methods of zonation for carrying out GHM. 

A workflow was presented, presenting very positive and promising results. The application of this method 

can be extended to other case studies, parametrization or regionalization methodologies. 

The advantages of the proposed methodologies are: 

• Addressing perturbation in a geologically consistent manner; 

• Respecting fluid production flow pattern, by usage of production streamlines; 

• Reduced parametrization of static properties with the discretization of the reservoir; 

• Ability to perturb static and engineering parameters and quantifying their uncertainty while 

integrating them on the history matching process; 

• Ability to provide better results than other standard regionalization methods, under less time; 

• Ability to generate multiple matched models; 

The application of the proposed methodology showed promising results, with the achieving of multiple 

history matched models with considerably low misfits. The creation of an ensemble of multiple history 

matched models by solving the ill–posed calibration problem, allows the prediction of reservoir behavior 

with a degree of uncertainty. 

Nevertheless, a limitation of the proposed methodology is its dependency on the right choice of prior 

ranges, which is essential for good optimization results.  

In the case of application to this reservoir case study, water production matching could probably be 

improved with a deeper investigation on the perturbation of other relevant parameters. Other 

methodologies or other choice of parameter perturbation and parametrization, could improve match 

results further (e.g. OWC or relative permeabilities). Other modeling related techniques, such as 

regridding, combination of different scenario grid properties, like top structures, could also assist in the 

finding of better matches. Finally, further work on the presented methodology can be done by exploring 

the benefits of using a Multi-Objective History Matching methodology for improvements on individual 

well matches. 

The successful application of the proposed methodology to a challenging semi-synthetic reservoir case 

study delivers good perspectives for its application to real cases. Further research on this area could be 

focused towards other types of parameter perturbation or towards its integration with seismic inversion. 
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APPENDIX A – BEST 5 REALIZATIONS (GHM COUPLING)  
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